
Intuit QuickBooks® SDK

Programmer’s Guide

Version 13.0

SDK version 13.0, released November 2013. (c) 2013 Intuit Inc. All rights
reserved.

QuickBooks and Intuit are registered trademarks of Intuit Inc. All other
trademarks are the property of their respective owners and should be treated
as such.

Acknowledgement: This product includes software developed by the Apache
Software Foundation (<http://www.apache.org>) (c) 1999-2006 The Apache
Software Foundation. All rights reserved.

Intuit Inc.
P.O. Box 7850
Mountain View, CA 94039-7850

For more information about the QuickBooks SDK and the SDK documentation,
visit http://developer.intuit.com/.

Contents 3

(c) 2013 Intuit Inc. All rights reserved.

CONTENTS

About This Manual

Who Should Read This Manual? . 19

Before You Begin . 19

What’s New in This Guide?. 20

Chapter 1: Introduction to QBSDK Programming

What is the SDK? . 21

What Kinds of Integrations are Possible with the SDK? . 22

Which QuickBooks Editions/Versions Support My Application? 23

What’s Included in the QuickBooks SDK Package? . 23

What is the Onscreen Reference OSR? Why Must I Use It? 24

How Does QuickBooks Toggling Affect My Application? . 24

Do I Have to Use XML? Or are Convenience Libraries Available? 24

Which Programming Languages Can I Use? . 25

What Do I Need to Know Before I Start Programming? . 25

What Kind of Technical Support is Available? . 25

Chapter 2: Jumpstart

After the Tech Overview and the SDK Essentials Video... 27

Chapter 3: The Communication Model and Ways of Implementing It

The Basic Communication Pattern. 29

Authorizations You Need to Know About . 29

Company Owner Authorization of SDK Applications . 30

Intuit Gateway Authorization of SDK Applications . 30

Messages: The Content of the Communication . 30

What’s in a Message?. 31

Ways to Implement Communication With QuickBooks . 31

Desktop Applications Accessing Local QuickBooks . 32

Web Services Accessing QuickBooks via QB Web Connector 32

Chapter 4: Specifying Authorization Preferences

How the QuickBooks UI Supports Authorization/Access . 35

When is the Authorization Dialog Displayed?. 35

The Default Authorization Dialog . 35

How the AuthPreferences Object Works. 37

How to Use the AuthPreferences Functionality. 38

What Happens as a Result of the AuthPreference Settings? 40

Setting Authorization Preferences Within QuickBooks. 42

4 Contents

(c) 2013 Intuit Inc. All rights reserved.

Chapter 5: Accessing Desktop QuickBooks Editions

Using Java with QB SDK. 45

A Note About the Request Processor . 45

How to Access QuickBooks . 46

VB Code Snippets for Access if You Use qbXML . 46

VB Code Snippets for Access if You Use QBFC . 47

What Happens in the Call to BeginSession? . 47

Troubleshooting Errors in the BeginSession Call . 48

Multiple Sessions versus a Single Session. 48

Using AuthFlags to Specify Support for QuickBooks Editions 49

Setting AuthFlags to Specify Support for a QuickBooks Edition. 50

More Information about Login Modes . 51

Setting Up Auto-Login. 52

Only One Auto-Login User per Application . 53

Limitations on Accessing Company Files . 53

Allowing Application Access to Personal Data . 54

Single-User vs. Multi-User Mode . 54

Trade-offs of Using Single-User Mode . 55

Microsoft Windows Vista & Windows 7 and UAC. 55

Chapter 6: Building Requests In QBFC and in qbXML

A Few Notes About Using QBFC. 57

Building a Request using QBFC . 57

What You Need to Do in QBFC . 58

Sample: Building a SalesOrder Using QBFC . 58

The Importance of the CreateMsgSetRequest Call . 59

Background Details About the MsgSetRequest Object . 60

Another View of the Message Set Request Structure . 61

Building a qbXML Request . 62

What You Need to Do in qbXML using a DOM Document 62

Chapter 7: Handling Responses Using QBFC or qbXML

Processing a Response Using QBFC . 65

Background Information: Understanding IMsgSetResponse 68

Background Information II: IResponse . 69

Processing a qbXML Response. 72

What You Need to Do to Process a Response in qbXML . 73

Processing a Response Message Set: Sample Code. 73

Chapter 8: Creating Queries

When to Use a Query vs a Report. 75

Different Ways of Using Queries to Get the Same Data . 75

Getting a Count of Query Objects . 76

Filters . 76

Contents 5

(c) 2013 Intuit Inc. All rights reserved.

Limiting the Number of Objects Returned . 76

Using Iterators to Walk Through Large Query Returns . 77

Limiting Returned Data Using IncludeRetElement . 79

Using MaxReturned . 80

List Queries: Commonly Used Filters. 81

ListID or FullName. 81

Active Status . 82

Filtering by Date Modified. 82

Match Criterion for Names . 83

Ranges for Names . 83

Special Information Contained in an AccountRet Object 84

Special Filters . 85

Transaction Queries: Commonly Used Filters . 86

TxnID or Reference Number . 86

Date Filters. 86

Entity Filters . 87

Account Filters . 88

Reference Number Filters . 89

Paid Status . 90

Requesting Additional Data. 90

Special Queries . 90

The Generic TransactionQuery. 90

TransactionQuery and Access Permissions . 91

Filters for TransactionQuery . 91

Chapter 9: Generating Reports

Before You Begin . 93

Categories of Reports . 93

General Summary Reports . 94

Job Reports . 95

Time Reports . 95

Aging Reports . 95

Budget Summary Reports. 96

General Detail Reports . 96

Payroll Summary Reports . 97

Payroll Detail Reports. 97

Custom Summary and Detail Reports. 98

Default Reports . 98

A Practical Approach . 99

Creating a Report Request. 99

Modifying a Profit and Loss Standard Report . 99

Setting Up Filters for a Profit and Loss Standard Report103

“IncludeColumn” Field .104

Required Filter for Certain Job Reports .105

Required Filter for Missing Checks Report .105

Example of a Report Request .105

Creating Requests for Budget Reports .105

6 Contents

(c) 2013 Intuit Inc. All rights reserved.

Interpreting the Report Response . 107

Report Meta-data . 107

Report Data . 109

Example . 109

Enumerated Values for “ClearedStatus” Column . 110

Transaction Detail Reports . 111

Order Column . 113

Including Personal Data in Reports . 113

Including Payroll Data in Reports . 114

My Report Has No Data! . 114

Valid Request Options for Individual Report Types . 115

Chapter 10: Modifying and Deleting Transactions and List Objects

Modifying Objects in General . 125

Edit Sequence . 125

One Way to Delete an Element’s Value . 125

Clearing References . 126

Clearing Aggregates . 126

How to Modify Transactions . 127

Parts of a Transaction . 128

Modifying the Body of a Transaction . 128

Modifying Transaction Body Without Modifying Line Items 130

Shortcut Way to Retaining a Line Item Exactly As Is . 130

Modifying a Line Item . 131

Inserting a New Line Item In a Mod Operation . 131

Deleting a Line Item . 131

Example: Modifying Transaction Lines . 131

Example: Modifying Groups within the Line Item Table 132

Example: Modifying Item Lines in an Item Group . 133

About Modifying Rate, Quantity, and Amount Line Item Fields. 134

Deleting an Object. 134

Must be in Single-User Mode (Except for Enterprise). 135

Accountant Copy Restrictions. 135

Locked Transactions . 135

About Closed Transactions . 135

About Permissions . 136

Voiding an Object . 136

Chapter 11: Data Ext: Using Custom Fields and Private Data

Core Differences Between Custom Fields and Private Data 137

How Do I Create Data Extensions? . 139

Enough Pictures: Show Me Some Code . 141

What Makes a Data Ext Definition a Custom Field vs Private? 143

But There is More To It . 143

A Cool Feature: Transactions Inherit From Customer, Item 143

Inheriting from Customer to Transactions . 143

Contents 7

(c) 2013 Intuit Inc. All rights reserved.

Inheriting from Item to Transactions .145

Do Individual Transactions Also Inherit Custom Field Values?146

Writing to Custom Fields Only Affects the Current Transaction 146

How Do I Get DataExt Data Back Using Queries? .146

Writing Data to a Data Extension .147

Clearing a Value from a Data Extension. .148

Deleting a Data Extension Definition: Limitations .148

Deleting Custom Fields From the QuickBooks UI .148

Making Custom Fields Show Up In QuickBooks and in Print148

I Want to Use Private Data: How Do I Use GUIDs? .151

The Format of the GUID within the Request .151

How Do I Retrieve OwnerIDs?. .151

What is an OwnerIDList? .151

Using Other, Other1, Other2 in Transactions .151

Writing Custom Field Data to Transaction Lines .152

Modifying Custom Field Data in Transaction Item Lines .153

Chapter 12: Using Macros In Requests

What is a Macro? .155

Must Macro Names be Unique? .155

A Sample Macro .156

Where Can You Define a Macro? Use a Macro? .157

Using Macros to Set Cleared Status .157

Chapter 13: Objects, ObjectRefs, Fullnames, and Attributes

Lists .159

Transactions .161

Identifiers. .162

ListID. .162

FullName .164

Object References .167

About DateTimes .167

Templates. .167

Operations. .167

Adding an Object: Example of a Request and Response168

Querying for Objects .170

Attributes in the SDK .171

Message Set-Level Attributes .171

Request Attributes. .172

Response Attributes. .172

Query Attributes .173

Chapter 14: Event Notification

Using the C# App Template to Implement Eventing .175

What Requests Do I Use and How Do I Invoke These? .175

8 Contents

(c) 2013 Intuit Inc. All rights reserved.

How Do I Invoke Subscription Events? . 176

Overview: The Event Notification Framework . 176

QuickBooks Events and Event Notification . 176

Subscribing to Events . 178

Authorizing a Callback Application to Receive Events . 181

Processing Events in a Callback Application . 182

Handling Special QuickBooks Operations . 189

Putting it All Together: The Event Notification Flow. 191

Implementing Event-Awareness in qbXML . 191

Subscribing, Unsubscribing, and Querying Subscriptions in qbXML 191

Implementing a qbXML-based Callback (IQBEventCallback). 196

Chapter 15: Integrating with the QuickBooks UI

Using the C# App Template to Implement UI Events . 199

What Types of Integrations Can I Do? . 199

Before Your Application Can Extend the QuickBooks UI . 200

Subscription . 200

Authorization . 201

Authorization Scenarios Affecting UI Extensions . 201

UI Guidelines . 204

Menu-Extension Guidelines . 204

Adding a Menu Item to QuickBooks . 206

Where Your Menu Item Will Appear . 206

Menu Item Names . 207

Display Conditions . 209

Getting QuickBooks Context Information From a Menu Item Click 211

Error Handling . 211

When the Authorization Level Changes . 212

Lost UI Events . 212

Invoking the QuickBooks UI . 213

Opening Transaction Forms . 213

Opening and Prefilling a New Transaction . 214

Opening List Windows. 215

Displaying Reports . 216

Chapter 16: Handling Receive Payment, Bill Payment, and Deposit
Transactions

Core Concepts for Receive Payment and Bill Payment . 217

Applying Payments, Credits, and Discounts . 217

Linked Transactions . 218

Returned Object for AppliedToTxnAdd . 219

Creating Links Instead of Transactions . 219

Receive Payment Transactions. 219

Applying a Payment . 219

Setting Discounts . 221

Setting Credits . 221

Contents 9

(c) 2013 Intuit Inc. All rights reserved.

Using ReceivePayment for Credit Card Authorization and Capture224

Modifying a ReceivePayment Transaction .224

Bill Payment Transactions .224

Payment Method .225

Paying the Bill .225

Setting a Credit. .226

Setting a Discount .227

Bill Payment Examples .227

Modifying a BillPaymentCheck Transaction .229

Deposits .230

Chapter 17: Linking ItemReceipt/Bill to PurchaseOrder, Invoice to
Sales Order

Important Note about Querying for Linked Transactions .233

Linking Bill or ItemReceipt to PurchaseOrder .234

The Basic User Scenario in the QuickBooks UI .234

Linking an ItemReceipt or Bill to PurchaseOrder Using the SDK.237

Rules For Linking a Bill or ItemReceipt to a PurchaseOrder 242

Why Does the OSR List LinkToTxn for Unsupported Transactions?.242

Converting ItemReceipts to Bills .243

Limitations and Pitfalls of Modifying a Bill or ItemReceipt .243

ItemReceipt and Bill Split Option for QuickBooks Enterprise.243

Re: “Is Manually Closed” in Purchase Orders and Sales Orders.244

Linking Invoices to SalesOrders .244

The Basic User Scenario in the QuickBooks UI .245

Linking Invoices to SalesOrders in the SDK. .248

Chapter 18: Using SalesReceipt Functionality

Adding a SalesReceipt. .255

Some Expected Data May be Missing from the Response262

Adding a SalesReceipt in QBFC .262

Adding a SalesReceipt in qbXML .265

Modifying a SalesReceipt .266

Special Limitations Imposed By Credit Card Payment Method267

Which SalesReceipt Fields Can Be Modified? .267

Which SalesReceipt Fields Can Be Cleared?. .267

Modifying a SalesReceipt in qbXML .268

Modifying a SalesReceipt in QBFC .269

Querying for SalesReceipts .273

Querying for SalesReceipts in qbXML .273

Querying for SalesReceipts in QBFC. .273

Deleting and Voiding SalesReceipts. .273

Chapter 19: Using Credit Card Refund Functionality

Adding a Credit Card Refund Transaction .275

10 Contents

(c) 2013 Intuit Inc. All rights reserved.

Adding a Credit Card Refund in QBFC . 278

Adding a Credit Card Refund in qbXML . 280

Querying for ARRefundCreditCard Transactions . 282

Deleting and Voiding ARRefundCreditCard Transactions . 282

Chapter 20: Using Price Levels in Transactions

What is a Price Level? . 283

The Two Types of Price Levels Supported by QuickBooks 284

Why Are Price Levels Useful? . 284

Are Price Levels Automatically Available? . 284

Using Price Level Functionality in Your Application . 284

How to Create a Price Level . 286

Creating a Fixed Percent Price Level . 286

Creating a Per Item Price Level . 287

How to Apply a Price Level to a Customer. 288

How to Apply a Price Level to a Line Item. 289

Chapter 21: Using Billing Rates To Bill For Time

Which QuickBooks Editions Support Billing Rates? . 291

Key SDK Limitations You Need to Know Before You Start. 291

What Happens If I Use Both Price Levels and Billing Rates? 292

What is a Billing Rate? . 292

What is the Workflow? How Do I use a Billing Rate?. 292

A Detailed Look at the Billing Rates Workflow . 293

Creating Service Items . 294

Creating Billing Rates in the UI . 299

Creating Billing Rates in the QB SDK. 301

Assigning Billing Rates to Employees, Vendors, Other Names. 303

Using Billing Rates in Time Transactions . 304

Invoicing Customers for Billable Time (UI Only) . 305

Chapter 22: Using the Multicurrency Feature in the SDK

Impact of Multicurrency on Existing Applications . 309

Company Preferences and Multicurrency . 310

Getting Multicurrency and Home Currency from PreferencesQuery 310

QuickBooks Currencies/Exchange Rates and the SDK. 310

“Built-in” Vs. User Defined Currencies . 310

Active Vs. Inactive Currencies . 311

How Do You Set Currency Exchange Rates? . 311

What Happens in Transactions When You Change Exchange Rate? 311

Multicurrency Effect on Transaction Amounts and Balances. 311

Multicurrency Effect on List Objects Amounts and Balances 311

Multicurrency Effects on Reports . 312

ARAccountRef/APAccountRef Guidelines . 312

Contents 11

(c) 2013 Intuit Inc. All rights reserved.

Chapter 23: Using the Multi-Location Inventory Feature in the SDK

Impact of Multi-Location Inventory on Existing Applications.313

Company Preferences and Multi-Location Inventory .313

Getting Multi-Location Inventory from PreferencesQuery313

InventorySite features for Multi-Location Inventory .314

Transfer Inventory Transactions Feature .314

Site Attributes for Transaction with Multi-Location Inventory315

Multi-Location Inventory Support for Group Items .316

Chapter 24: Using the Quickbooks Vehicle Mileage Feature

Key Limitations of QB SDK Support for Vehicle Mileage 318

How the Vehicle Mileage Feature Works. .319

Setting Up an Item to be Used In Billable Mileage Transactions 321

What Happens to Mileage Charges When I Create Invoices? 322

Mileage Charges and Invoices in the UI .322

Mileage Charges and Invoices in the SDK .323

Adding a Vehicle Mileage Transaction .324

Adding Vehicle Mileage in qbXML. .324

Adding Vehicle Mileage in QBFC. .324

Querying and Deleting Vehicle Mileage Transactions .325

Modifying Vehicle Mileage Transactions .325

Adding, Modifying, Querying Vehicles in the Vehicle List .325

Chapter 25: Adding, Modifying, Querying Worker Comp Codes

What Can I Do With the Comp Codes I Create? .327

Workers’ Comp Code Feature Requires Payroll Subscription327

How Can I Tell Whether the Company is Subscribed to Payroll?.328

Workers Comp Codes in the UI and in the SDK .328

Adding a Comp Code with Several Rates Possible via SDK 329

Current Effective Date and Current Rate. .329

Rate History: Visible Only Through the SDK .329

Adding a Workers Comp Code .330

Adding a Comp Code Using QBFC .330

Adding a Comp Code Using qbXML .331

Querying for Workers Comp Codes .331

Querying for Comp Codes in qbXML. .331

Modifying Workers Comp Codes .332

Modifying a Comp Code in qbXML .333

Chapter 26: Using the Unit of Measure Feature Via the SDK

How Can I Tell If the UOM Feature is Available? .335

Which SDK Requests Support UOM? .335

How Does the UOM Feature Work? .336

Creating a UOM Set in the UI .340

12 Contents

(c) 2013 Intuit Inc. All rights reserved.

How Do I Create a UOM Set in the SDK? . 341

Why Do I Need to Follow the UOM Set Naming Convention? 342

Can I Modify a UOM Set in the SDK?. 342

Can I Set UOM Set Defaults for Purchase, Sales, and Shipping? 342

How Do I Specify Which Units the UOM Set Contains?. 342

What Does the Abbreviation Field Do? Why’s it Required? 343

Creating a UOM Set in QBFC . 343

Creating a UOM Set in qbXML . 344

Specifying a UOM Set for an Item . 345

What You Must Do in an Item Mod . 345

Specifying a UOM Set in an Item* Add Request . 345

Specifying a UOM Set in an Item* Mod Requst. 346

Using UOM in Transactions . 347

Using UOM in a Transaction Add Request. 347

Using UOM in a Transaction Mod Request . 348

Chapter 27: Merging Accounts, Customers, Vendors, Classes

What Does ListMerge Do?. 351

What Happens in the ListMerge Operation? . 351

When Can I NOT Do a ListMerge?. 352

Can I Undo or Reverse a ListMerge? . 352

What Must I Do Before Merging? . 352

Merging Accounts . 353

Comparing AccountType and Changing Sublevel. 354

Merging Classes . 357

Merging Customers . 357

Code Sample . 358

Merging Vendors . 359

Chapter 28: Using Assembly Item and BuildAssembly Functionality

Overview of QuickBooks Assembly Items and Build Assembly 361

You Must Have Sufficient Components for the BuildAssembly. 362

QB Activities that Change BuildAssembly Transactions into Pending 363

Consequences of Modifying an Existing Inventory Assembly Item. 363

Impact of SalesReceipts and Invoices on Assemblies in Inventory 364

Disassembling Inventory Assemblies . 364

Getting BuildAssembly and Assembly Item Reports . 365

Adding an Inventory Assembly Item . 365

Adding an ItemInventoryAssembly in qbXML . 369

Adding an Assembly Item in QBFC . 370

Modifying an Existing Inventory Assembly Item . 372

Modifying an Assembly Item in qbXML . 372

Modifying an Assembly Item in QBFC . 372

Querying for Inventory Assembly Items . 374

Querying for Assembly Items in qbXML . 375

Querying for Assembly Items in QBFC. 376

Contents 13

(c) 2013 Intuit Inc. All rights reserved.

Adding a BuildAssembly Transaction .376

Adding a BuildAssembly Transaction in qbXML .378

Adding a BuildAssembly Transaction in QBFC .380

Modifying an Existing BuildAssembly Transaction .380

Modifying a BuildAssembly in qbXML .381

Modifying a BuildAssembly in QBFC .383

Querying for BuildAssembly Transactions. .384

Querying For BuildAssembly Transactions in qbXML .385

Querying For BuildAssembly Transactions in QBFC. .385

Chapter 29: Taxes and Discounts (US Versions)

Calculating Sales Tax .387

Applying Multiple Taxes .387

Applying Discounts .388

Flat vs. Percentage Discounts .389

Nontaxable Flat Discount .389

Taxable Flat Discount .390

Chapter 30: Remote Data Sharing and Your Application

What is Remote Data Sharing?. .391

Using RDS Client for Remote Access with QuickBooks Installed Locally 391

RDS and Event Notification .391

Compatibility with Older Versions of RDS .392

About the RDS Server .392

About the RDS Client .394

Distributing RDS. .395

How to Use the SDK Installers and Merge Modules .396

Choices in Implementing Your Installer .398

Supporting RDS .399

What Your Application Must Do to Use RDS. .399

Which Versions of QuickBooks Support RDS? .400

What You Need to Tell Your Customers about RDS. .400

RDS-Specific HRESULTs Messages .400

Chapter 31: Error Recovery

The General Error Recovery Mechanism .403

When to Invoke Error Recovery. .403

HRESULTs Returned by QuickBooks .403

Automated Error Recovery in QBFC. .404

Implementing Automated Error Recovery .404

Using Error Recovery in qbXML-based Applications .405

Error Recovery Using Old and New Message IDs .405

How to Clear All Error Recovery Information .405

Steps for Using Error Recovery in qbXML-based Applications.405

Example. .406

14 Contents

(c) 2013 Intuit Inc. All rights reserved.

Message Set Status Code . 407

Request ID . 408

Comparing Requests (Performing a Checksum) . 408

Status for Individual Requests within a Message Set. 408

Clearing State (oldMessageSetID) . 409

Maintaining State within Your Application . 410

Clearing Error Recovery Records Maintained by QuickBooks. 411

Chapter 32: How to Use the QBFC Convenience Library

Understanding QBFC Objects . 413

Objects, Objects Everywhere: Where Do I Start? . 413

Which Objects Do I Need to Create a Request? . 414

How Do I Use the OSR to Fully Construct the Request? 415

Other Useful IMsgSetRequest Methods . 417

Which Objects Do I Need to Process a Response? . 418

Getting Data from the Ret Object . 419

Objects and Methods Used in Processing Response Data 420

Chapter 33: QBFC Language Reference

QBSessionManager Object and Methods . 423

QBSessionManager.BeginSession. 425

QBSessionManager.ClearErrorRecovery . 428

QBSessionManager.CloseConnection . 429

QBSessionManager.CommunicateOutOfProcess . 430

QBSessionManager.ConnectionType . 431

QBSessionManager.CreateMsgSetRequest. 432

QBSessionManager.CreateSubscriptionMsgSetRequest . 433

QBSessionManager.DoRequests. 434

QBSessionManager.DoRequestsFromXMLString . 435

QBSessionManager.DoSubscriptionRequests . 436

QBSessionManager.DoSubscriptionRequestsFromXMLString 437

QBSessionManager.EnableErrorRecovery . 438

QBSessionManager.EndSession . 439

QBSessionManager.ErrorRecoveryID . 440

QBSessionManager.GetCurrentCompanyFileName . 441

QBSessionManager.GetErrorRecoveryStatus . 442

QBSessionManager.GetSavedMsgSetRequest . 443

QBSessionManager.GetVersion . 444

QBSessionManager.IsErrorRecoveryInfo . 445

QBSessionManager.OpenConnection2. 446

QBSessionManager.QBAuthPreferences . 447

QBSessionManager.QBXMLVersionsForSession. 448

QBSessionManager.QBXMLVersionsForSubscription . 449

QBSessionManager.SaveAllMsgSetRequestInfo . 450

QBSessionManager.ToEventsMsgSet. 451

QBSessionManager.ToMsgSetRequest. 452

Contents 15

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.ToMsgSetResponse .453

QQBSessionManager.ToSubscriptionMsgSetResponse .454

IQBAuthPreferences Object and Properties .455

IQBAuthPreferences.GetIsReadOnly .456

IQBAuthPreferences.GetPersonalDataPref .457

IQBAuthPreferences.GetUnattendedModePref .458

IQBAuthPreferences.PutAuthFlags .459

IQBAuthPreferences.PutIsReadOnly .460

IQBAuthPreferences.PutPersonalDataPref .461

IQBAuthPreferences.PutUnattendedModePref. .462

IQBAuthPreferences.WasAuthPreferencesObeyed .463

IMsgSetRequest Object and Methods .464

IMsgSetRequest.Append* .466

IMsgSetRequest.Attributes .467

IMsgSetResponse Object and Methods .468

IRequest Object and Methods .468

IResponse Object and Methods .469

Chapter 34: Digitally Signing Your Code

Can I Sign ActiveX or Java Applications? .471

About Microsoft Authenticode. .471

What is a Digital Certificate? .471

The Certificate Authority .472

Code Signing .472

Obtaining a Digital Certificate .472

Commercial CA Entities You Can Use .473

Obtaining the Certificate .473

Signing Your Code .473

Do You Have Everything You Need? .473

An Example Using a Test Application .474

Signing Code With the Internet Client Software Developer’s Kit 475

Chapter 35: Tips and Techniques

Best Practices .481

Validating Requests .483

Investigating the Problem Thoroughly. .483

Building a Test Case to Make Available to Developer Support483

Sending a Test Case and the Log File to Developer Support484

Chapter 36: Supporting Your User

Using the SDKDiag Tool to Support Your User .485

Helping Users Troubleshoot and Resolve Problems .485

Multiple Installed Versions of QuickBooks .486

Incompatible Versions: QuickBooks and Company File .486

Different Company File Is Already Open .486

16 Contents

(c) 2013 Intuit Inc. All rights reserved.

Warn Your Users to Complete Error Recovery
before Upgrading . 487

Versions of Integrated Applications. 487

Provide a Means for Breaking Out of Error Recovery . 487

Topics to Include in Your Documentation . 488

Permissions Required for Auto-Login. 488

QuickBooks User Permissions. 488

Application Access to Personal Data . 489

Complete Error Recovery before Upgrading . 489

Chapter 37: Making Your Application Robust

Types of Error Codes . 491

Appendix A for Status Code Information . 491

Monitoring HRESULTs and HTTP Errors . 492

Monitoring Message Set Status Codes. 492

Monitoring Status Codes . 492

Using the Log File . 493

Software Versions . 494

Checklist . 494

Checking the QuickBooks Version . 494

Dealing with Unsupported Features . 498

Error Recovery . 499

Synchronizing Data between Your Application and Quickbooks 499

Monitor Status Codes . 499

Example of Synchronizing Data with QuickBooks . 500

Three-Month Limit for ListDeletedQueryRq . 503

Modification Time . 503

Cases Needing Complete Re-Sync . 503

Check with the User . 503

Chapter 38: Redistributing SDK Components With Your Application

Using the Installers and Merge Modules . 505

Using the Stand-Alone Installers . 506

Using the Merge Modules . 506

Appendix A: Status Codes for qbXML Responses

HRESULTS from qbXML COM Methods . 515

Appendix B: QuickBooks Data Accessible Via SDK Objects/Operations

Objects/Operations Supported by Desktop Editions . 519

SDK Requests Supported in QuickBooks Simple Start Edition 522

Additional Differences for SDK Support of QB Simple Start 529

Contents 17

(c) 2013 Intuit Inc. All rights reserved.

Appendix C: qbXML Specification for the Canadian and UK Editions

Notes for QB CA/UK 2008 and Newer .531

Canada .531

UK. .531

Notes for QB CA/UK 2007 and Older .532

Differences Between the Canadian and UK Specs .532

Differences Between the US and Canadian qbXML Spec534

Installation .536

About Units of Measure .536

About UI Integration .537

Appendix D: qbXML RequestProcessor Method Reference

AuthPreferences .542

BeginSession .543

CloseConnection. .545

EndSession .546

GetCurrentCompanyFileName .547

GetIsReadOnly .548

GetPersonalDataPref .549

GetUnattendedModePref .550

WasAuthPreferencesObeyed. .551

PutAuthFlags .552

PutIsReadOnly .553

PutPersonalDataPref .554

PutUnattendedModePref .555

MajorVersion .556

MinorVersion .557

OpenConnection2 .558

ProcessRequest .559

ProcessSubscription .560

QBXMLVersionsForSession .561

QBXMLVersionsForSubscription. .562

ReleaseLevel .563

ReleaseNumber .564

Appendix E: Enterprise Edition and Single/Multi-User Issues

Enterprise Features Requiring Single User Mode. .565

Enterprise List Operations Requiring Single User Mode .566

Enterprise Multi User Features .566

Appendix F: Overpayments and Refunds

Overpayments and Refunds .569

The Manual Solution .572

18 Contents

(c) 2013 Intuit Inc. All rights reserved.

Taking it to the SDK. 577

QuickBooks 2007 to the Rescue! . 582

Conclusion . 587

Who Should Read This Manual? 19

(c) 2013 Intuit Inc. All rights reserved.

ABOUT THIS MANUAL

This manual provides general and detailed information on how to create an application that

effectively integrates with QuickBooks. A wide range of topics is covered, including how

to make the communication work, how to build request mesages, the structure and content

of specific request messages, how to use the QBFC convenience library, and so forth. It

assumes that you are familiar with and have read the Technical Overview, which introduces

many of the concepts used in this document.

A very useful video called QuickBooks SDK Essentials is also available online at the IPP

developer website to help you get started quickly and in the the right direction.

Who Should Read This Manual?

This manual is a reference resource for all developers who are creating applications that

integrate with QuickBooks. It provides practical information on how to create request

messages and interpret response messages using the QuickBooks SDK, regardless of which

API you choose (that is, qbXML or QBFC) or the QuickBooks product that is your target.

It describes the details of how to create queries and reports and guides you through dealing

with complex transactions such as receive payment and bill payment. Important new

features such as event notification and integrating with the QuickBooks user interface are

described in detail. This manual also focuses on general application concerns such as error

recovery, how to synchronize application data with QuickBooks, and how to anticipate

typical user problems in your application.

Before You Begin

Before you read the rest of this manual, be sure you’ve read the Technical Overview for the

QuickBooks Software Development Kit (SDK). This manual assumes you’re already

familiar with the introductory material and key concepts contained in the overview. Be sure

to check out the Onscreen Reference for QuickBooks, which contains the syntax for each

request and response message type for all of the SDK APIs.

This manual applies to integrating an application with any QuickBooks product. In many

cases, developers may be creating an application that integrates with several QuickBooks

products (for example, U.S. edition of QuickBooks, Canadian edition of QuickBooks, and

UK edition of QuickBooks).

IMPORTANT

The Onscreen Reference is central to your programming
tasks. You need to refer to it when you are programming
because it contains the syntax and tag names required.

https://developer.intuit.com/docs/0025_quickbooksapi/0055_devkits/0250_qb/0040_get_building

20 About This Manual

(c) 2013 Intuit Inc. All rights reserved.

What’s New in This Guide?

This version of the programmer’s guide has been restructured to highlight important topics

at the table of contents level. New chapters have been added to cover aspects of SDK

programming that were troublesome for many developers and existing chapters have been

revised for the same reason. Also new in this version is documentation on new features

available in the SDK, such as billing rates, vehicle mileage, and so forth.

What is the SDK? 21

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 1 1

INTRODUCTION TO QBSDK PROGRAMMING 1

This chapter provides answers to questions many developers have when they start

investigating the QuickBooks SDK, which we’ll call “QBSDK” or simply “SDK” from this

point forward. What you should expect to find here are answers to many of the questions

you are likely to have when you first pick up the QBSDK and try to figure out what it does

and how you can use it:

• What is the SDK and why should I use it?

• What kinds of integrations are possible with the SDK? What kind of integrations with

the QuickBooks UI and event flow are possible? Which QuickBooks features and data

are accessible or not accessible?

• If I develop an application, which versions and editions of QuickBooks will support it?

• What is all this stuff included in the SDK package?

• What is the Onscreen Reference, and why do I need to use it?

• Do I have to use XML or are there convenience libraries to make life easier for me?

• Which programming languages can I use?

• What do I need to know in order to start programming?

• What kind of technical support is available? Where can I go for information that is not

in the SDK documentation?

• What impact does the QuickBooks Accountant version’s toggling feature have on

integrated applications?

What is the SDK?

The term “QuickBooks SDK” or simply “SDK” can refer either to the QBSDK package that

contains the tools, samples, and documentation or it can refer to the QBXML request

processor, which is a runtime component that is shipped with QuickBooks. In this guide,

we’ll use “SDK” to mean the runtime component and “SDK package” when we are referring

to the set of tools, samples, and so on.

It is the QBXML request processor that provides the actual functionality that integrated

applications use when these applications access QuickBooks. Your application uses the

request processor whenever it accesses a QuickBooks company: the request processor does

the qbXML validation, sends the requests to QuickBooks and returns the QuickBooks

responses (see Figure 1-1 on page 22).

As shown in Figure 1-1 on page 22, the request processor provides QuickBooks access to

your application for QuickBooks desktop edition. Notice that the input and the output is

XML, even if you use the QBFC convenience library, but QBFC does all the XML work for

you (more on the QBFC library later in this chapter).

22 Chapter 1: Introduction to QBSDK Programming

(c) 2013 Intuit Inc. All rights reserved.

Figure 1-1 Accessing QuickBooks through the request processor

Notice that the Request Processor is a DLL that is installed during a QuickBooks installation,

and runs in the same process as QuickBooks.

What Kinds of Integrations are Possible with the SDK?

If you are scoping out a potential application, you’ll want to know the kinds of integrations

that are possible with the SDK. The SDK originally provided only data access integration,

and data access is still the most prominent feature of the SDK. A list of the QuickBooks

data and objects that are made accessible via the SDK is provided in Appendix B,

“QuickBooks Data Accessible Via SDK Objects/Operations.”

However, more recent releases of the SDK also provide integration with QuickBooks

events, where your application can subscribe to various events and receive notification

when certain types of QuickBooks activity occur, for example, you can be notified when a

customer is added or modified, and so forth.

Another integration that is possible is to integrate with the QuickBooks UI in two specific

areas:

• Menu, where your application can place a menu item within certain QuickBooks

pulldown menus.’

• Displaying forms, where your application can cause certain QuickBooks forms to be

displayed, and even prefill some of these forms.

Which QuickBooks Editions/Versions Support My Application? 23

(c) 2013 Intuit Inc. All rights reserved.

The Programmer’s Guide describes all of the integrations, the data integrations are covered

throughout the guide. The UI and event integrations are covered in two chapters:

• Chapter 15, “Integrating with the QuickBooks UI.”

• Chapter 14, “Event Notification,”

Which QuickBooks Editions/Versions Support My Application?

The release notes provided with the QB SDK package include the latest tables listing the

QuickBooks versions and editions and the corresponding level of the qbXML spec that they

support. Please refer to the release notes for those details.

The SDK provides methods for querying which version of the qbXML specification is

supported by the version of QuickBooks that is currently running on the user’s system. (The

QBXMLVersionsForSession) method can be called after the session begins.) If you write

“smart” code that checks the version and responds accordingly, your application can run

against multiple versions of QuickBooks.

What’s Included in the QuickBooks SDK Package?

Conceptually, the QuickBooks SDK includes the following software libraries, manuals,

utilities, and examples. Remember that the qbXML Request Processor is a runtime

components of QuickBooks itself and is shipped with QuickBooks.

• Software libraries. APIs for creating, sending, and receiving QuickBooks messages.

These libraries, include

> qbXML Request Processor Interface

> QuickBooks Foundation Class (QBFC) Library

• qbXML specification. The qbXML specification is described in qbXML schema files

that are distributed with QuickBooks. QuickBooks validates your application’s requests

against the qbXML specification.

• QuickBooks Web Connector. The QB Web Connector is a component that makes it

easier for web services to access QuickBooks. Programming applications that work

with the QB Web Connector is documented in the QuickBooks Web Connector

Programmer’s Guide, which is included with the SDK.

• qbmsXML specification. The qbmsXML specification details the QBMS transaction

requests and responses that are available for applications that integrate with the

QuickBooks Merchant Service.

• Example qbXML file. This file (qbxmlops*.xml) includes examples of all qbXML

request and response messages.

• Example qbmsXML file. This file (qbmsxmlops*.xml) includes examples of all

qbmsXML request and response messages.

• Documentation. In addition to this Programmer’s Guide, the following QuickBooks

SDK documentation is available:

> Onscreen Reference

24 Chapter 1: Introduction to QBSDK Programming

(c) 2013 Intuit Inc. All rights reserved.

> Developer’s Guide for QBMS (QuickBooks Merchant Service)

> QuickBooks Web Connector Programmer’s Guide

> Technical Overview

• Utilities. The SDK includes several utilities to aid in your development cycle. To verify

that a given qbXML or qbmsXML document conforms to the qbXML or qbmsXML

specification, use the qbXML Validator utility. To test the request/response cycle, use

the SDKTest+ utility, which accepts a qbXML request, sends it to QuickBooks, and

returns the response. Source code for SDKTest+ is available in multiple languages for

desktop versions of QuickBooks.

• Sample applications. The SDK includes a large set of sample application programs,

including both source code and executable files in Visual Basic, C, C++, and Java.

What is the Onscreen Reference OSR? Why Must I Use It?

Once you’re ready to program, you’ll use the Onscreen Reference often to find out the exact

syntax of a given request or response. This online tool provides detailed reference

information for all developer libraries—qbXML and QBFC for QuickBooks (U.S),

QuickBooks (Canada), QuickBooks (UK), and qbmsXML (for QuickBooks Merchant

Service).

The OSR includes descriptions of each object, aggregate, and element in the SDK. For each

element, it includes the data type, maximum length (for strings) or range (for numerical

values), whether it is required or optional, and whether it is restricted to a particular release.

This online tool is also a handy place to look up the meaning of any SDK error code.

How Does QuickBooks Toggling Affect My Application?

QuickBooks 2006 and later Premier and Enterprise Accountant versions support the

toggling feature, in which the Accountant version can be toggled to become the other

editions and flavors. Some developers use the Accountant version for just that toggling

ability, to make sure their application works on targetted editions and flavors.

Notice that any SDK application with an open connection to the company file must close

that connection prior to the toggling. After the toggling, the application can re-open the

connection.

Do I Have to Use XML? Or are Convenience Libraries Available?

An important initial decision you’ll need to make is whether to use the qbXML Request

Processor API or the QBFC API. The main difference between the two approaches is that the

qbXML Request Processor API requires you to create and parse qbXML documents

explicitly. With the QBFC interface, you are relieved of the task of parsing the qbXML

content because you specify the data in terms of parameter/value pairs within COM methods.

There is little performance difference between the two approaches.

Which Programming Languages Can I Use? 25

(c) 2013 Intuit Inc. All rights reserved.

Which Programming Languages Can I Use?

The QuickBooks SDK is designed for use by a wide variety of developers in many different

development environments. Its application programming interfaces (APIs) can be used by any

programming language that is compatible with Microsoft’s Component Object Model

(COM).

What Do I Need to Know Before I Start Programming?

You need to know the functional area of QuickBooks that you intend to access in your

program. You need to know how the UI works in that area: what you can do in the UI and

what you cannot do. In general, the SDK simply mirrors the functionality provided in the

UI.

What Kind of Technical Support is Available?

The best source of additional information are the forums, knowledgebases, and FAQs that

are provided free of charge at https://developer.intuit.com. If further assistance is required,

use the technical support links provided at that site to contact technical support.

26 Chapter 1: Introduction to QBSDK Programming

(c) 2013 Intuit Inc. All rights reserved.

After the Tech Overview and the SDK Essentials Video... 27

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 2 1

JUMPSTART 1

If you are new to QB SDK programming, the fastest and surest way to get started in QB

SDK programming is use the following two resources:

• The Technical Overview, which is supplied with the QB SDK installation.

• The QuickBooks SDK Essentials Video available free at the IPP Website

The video, which can be downloaded or viewed on the web, runs about one hour. It will

save you many times over that amount of time in getting you on the right track. We highly

recommend this video to newcomers and to anyone not entirely comfortable in SDK

programming.

After the Tech Overview and the SDK Essentials Video...

Once you read the Technical Overview and take a look at the SDK Essentials video, and are

ready to investigate programming one of the SDK features, consider these resources in this

recommended order:

1. Consult the QB SDK Programmer’s Guide (this document) for the topic area you are

interested in. Doing this can save you lots of time later.

2. Check out the OSR for an understanding of the request features.

3. Check out the programming samples in the qbsdk\samples subdirectory, including the

xmlfiles subdirectory. You should be able to find much of what you need there.

4. Search the IPP Live Community forums.

https://developer.intuit.com/docs/0025_quickbooksapi/0055_devkits/0250_qb/0040_get_building
https://intuitpartnerplatform.lc.intuit.com/

28 Chapter 2: Jumpstart

(c) 2013 Intuit Inc. All rights reserved.

The Basic Communication Pattern 29

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 3 1

THE COMMUNICATION MODEL AND WAYS OF IMPLEMENTING IT 1

This chapter describes the basic communication pattern used by all SDK applications,

authorizations of SDK applications, which is part of that pattern, and the different ways that

you can implement communication with QuickBooks.

The Basic Communication Pattern

All communication between QuickBooks and SDK applications follow the same basic

pattern. The application first establishes communication with QuickBooks (this involves

both connection-related method calls AND human interaction (getting the company

owner’s authorization). The application then sends a request set containing one or more

requests. QuickBooks processes the requests and sends back a response set containing one

or more responses (Figure 3-1).

Figure 3-1 The Basic Communication Model

This is a pretty high level view of things, but it is general enough to serve for the various

supported ways to access QuickBooks. Once you get down to particular types of access,

such as desktop applications accessing local QuickBooks, you’ll learn about request

processor DLL running in the QuickBooks process to handle incoming requests and send

out outgoing requests. We’ll cover those details a little further on in this chapter.

Authorizations You Need to Know About

There are two types of authorization that impact your application:

• Company owner authorization, which applies to all SDK applications

• Gateway authorization, which applies to applications using Intuit gateway such as QB

Merchant Services.

30 Chapter 3: The Communication Model and Ways of Implementing It

(c) 2013 Intuit Inc. All rights reserved.

Company Owner Authorization of SDK Applications

No SDK application can access a QuickBooks company unless the company owner (your

customer) authorizes that application. The first time your application accesses QuickBooks,

the company owner is prompted to grant or deny the access and also limit the access to

certain areas of QuickBooks data. The authorization grant can be a good-until-cancelled

authorization or a single session authorization. The authorization also can restrict access to

sensitive data, if desired by the company owner.

Once authorization is granted, the application can access the company, but you should be

aware that the owner can revoke that authorization at any time from within QuickBooks.

The way authorization is granted and how your application responds to the authorization

mechanism varies with the way you are communicating with QuickBooks. So we’ll discuss

authorization mainly from within each type of implementation.

Intuit Gateway Authorization of SDK Applications

If your application is using Intuit gateway QB Merchant Services, then it must be

authorized by those Intuit gateways or your connection attempt through them will fail.

Gateway authorization is entirely separate from company owner authorization: it is

controlled entirely from the side of Intuit. The gateway’s authorization for desktop

applications is acquired by registering the application with IPP. The gateway’s authorization

for hosted web applications is acquired by registering with IPP and in addition acquiring a

certificate from Intuit. Application registrations and certificates are described in the chapter

that covers accessing QBMS.

Authorization of your application, whether desktop or hosted, can be revoked by the Intuit

gateways at any time if your application is causing problems, which is why your

registration should have current contact information in it.

Messages: The Content of the Communication

Whatever the communication model, the “stuff” being communicated is qbXML message.

Messages are of two types:

• requests that your application sends to QuickBooks

• responses that QuickBooks returns to your application

One or more individual messages are grouped into a message set, which contains a

collection of either requests or responses.

Ways to Implement Communication With QuickBooks 31

(c) 2013 Intuit Inc. All rights reserved.

The name of a message indicates the QuickBooks object it deals with and the operation to

be performed on that object, as described in the following sections. Request messages have

the suffix Rq, and response messages have the suffix Rs. To get a feel for the messages

you’ll be working with, spend a few minutes exploring the Onscreen Reference for your

target QuickBooks product.

What’s in a Message?

The smallest component of a message is an element. The exact form of an element depends

on the API you’re using—whether you’re using the qbXML Request Processor API or the

QBFC (QuickBooks Foundation Class) Library to create requests and interpret responses.

Elements are name/value pairs and sometimes have associated attributes. Messages group

elements into containers called aggregates.

Regardless of the API you choose, the concepts are the same, which is why this manual

addresses the needs of multiple QuickBooks SDK audiences. For purposes of brevity, most

of the examples are in qbXML. If you’re using the QBFC COM API, the messages will be

constructed differently, but the elements, aggregates, and attributes will be used in exactly

the same manner.

For example, here is a request to add an account, AccountAddRq:

<AccountAddRq requestID=”2”>

<AccountAdd>

<Name>Checking Account</Name>

<AccountType>Bank</AccountType>

<BankNumber>0350039560</BankNumber>

</AccountAdd>

</AccountAddRq>

In this example, AccountAdd is an aggregate that contains the essential data of the

message. Name, AccountType, and BankNumber are all elements. AccountAddRq is also

an aggregate and is often referred to as the message aggregate since it contains the entire

message and its request ID (which, in qbXML, is an attribute).

In qbXML, an element or aggregate begins with its name in angled brackets:

<AccountAdd>

and ends with the name, preceded by a backslash, also in angled brackets:

</AccountAdd>

Ways to Implement Communication With QuickBooks

Your application can communicate with QuickBooks in any of the following ways:

• A desktop application accessing a local QuickBooks

32 Chapter 3: The Communication Model and Ways of Implementing It

(c) 2013 Intuit Inc. All rights reserved.

• A remote web application (web service) accessing a local QuickBooks via the local

QuickBooks Web Connector (QBWC)

IMPORTANT

You can also access QuickBooks POS and/or QuickBooks
Merchant Service (QBMS) from any of the above
implementations. For details please refer to the QB POS SDK
Programmer’s Guide and the QBMS Programmer’s Guide.

Desktop Applications Accessing Local QuickBooks

The most typical communication is shown in Figure 3-2, where a desktop application

accesses a QuickBooks installation running on the same machine.

Figure 3-2 Desktop Application to Desktop QuickBooks Communication

In this implementation type, notice that the developer application drives the connection and

data exchange.

Where to Find More Details

This communication type has been around forever and so has the documentation for it. For

all the details related to communication, including sample code, see Chapter 5, “Accessing

Desktop QuickBooks Editions.”.

Web Services Accessing QuickBooks via QB Web Connector

One of the more recent access types is a remote web service accessing a local QuickBooks

(see Figure 3-3).

Ways to Implement Communication With QuickBooks 33

(c) 2013 Intuit Inc. All rights reserved.

Figure 3-3 Remote Web Service Accessing Local QuickBooks

As shown in the figure, the Web Connector functions as the SDK application. At user

specified intervals, the Web Connector asks the remote web service if it has any outstanding

work to do. (QBWC knows how to contact the web service from a QWC file obtained from

the web service provider.)

User name and password are supplied to the web service in this initial contact, so the web

service can do the lookups and see what needs to be done for that user. If the web service

has work for the user, it sends the proper qbXML requests to QBWC. QBWC passes them

on to QuickBooks and then returns the QuickBooks response to the remote service.

All the communication between web service and QBWC is done over HTTPS for security

purposes. This means a web service must obtain and use a standard industry certificate from

providers like Thawte, Verisign, and so forth.

Where to Find More Details

For complete details on implementing the required QBWC web service interfaces, see the

QBWC Programmer’s Guide, which is included in the QB SDK.

34 Chapter 3: The Communication Model and Ways of Implementing It

(c) 2013 Intuit Inc. All rights reserved.

How the QuickBooks UI Supports Authorization/Access 35

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 4 1

SPECIFYING AUTHORIZATION PREFERENCES 1

The QuickBooks administrative user is the one who authorizes your application for access

to the company, and can restrict that authorization in various ways, such as not allowing

access to sensitive financial data. This can adversely affect your application if it needs more

access permissions than the QuickBooks user grants it. How do you handle this situation?

For QB Simple Start edition, there is no built-in way using the SDK to solve this problem.

However, for desktop editions of QuickBooks other than Simple Start, there is a way for

your application to notify the user about required access permissions. You can use the

AuthPreferences object to tell the QuickBooks user what your application needs.

This chapter describes the overall authorization behavior built into the QuickBooks UI, and

how the AuthPreferences object works with it to prompt the user to grant needed access

rights.

How the QuickBooks UI Supports Authorization/Access

The first time your application logs in to QuickBooks, QuickBooks must already be

launched and running in the foreground with a company file open and the administrator

user logged in. These requirements prevent unauthorized applications from gaining access

to QuickBooks. The authorization process is triggered by the call to BeginSession.

When is the Authorization Dialog Displayed?

The authorization dialog appears when an application tries to access a QuickBooks

company file for the first time. The authorization dialog is also displayed when

• A QuickBooks company file is opened for the first time by an application after it makes

an event subscription

• An application previously authorized to access a particular QuickBooks company file

attempts to access that file in a way different than authorized or with different

preferences than the last time it accessed that file. This supports the AuthPreference

functionality that allows your application to prompt the user to provide the type of

authorization your application needs.

The Default Authorization Dialog

The default authorization dialog is the one that QuickBooks presents to the user if the

AuthPreferences property is not used. It is shown in Figure 4-1. In this authorization dialog,

the QuickBooks administrator can

36 Chapter 4: Specifying Authorization Preferences

(c) 2013 Intuit Inc. All rights reserved.

• Refuse authorization by selecting “No”

• Authorize for only the current session and force the application to be authorized again

the next time the application attempts to access a company file by selecting "Prompt

each time"

• Authorize the application to access QuickBooks with no additional authorization

whenever that company file is open, regardless of which user is logged in by selecting

“Yes, whenever this company file is open.”.

• Authorize the application to log on in unattended mode (auto login) by selecting “Yes,

allow access even if QuickBooks is not running.”

> If the user selects unattended mode authorization, and if there is more than one user

(not just the administrative user) then the “login as” dropdown is visible and

enabled, presenting the user with a list of login IDs currently able to log in to that

company file.

• The checkbox at the bottom of the authorization dialog, if checked, authorizes your

application to access sensitive personal data. However. the currently logged in user is

still restricted by the permissions set up in QuickBooks, regardless of whether or not

the checkbox is checked.

How the AuthPreferences Object Works 37

(c) 2013 Intuit Inc. All rights reserved.

Figure 4-1 Default Authorization Form

How the AuthPreferences Object Works

Starting with QuickBooks 2005, you can use the AuthPreferences object to inform the user

via the QuickBooks authorization dialog itself, about the level of access that your

application requires.

AuthPreferences allows you to let the user know immediately what your application

requires, simplifies the user’s choices by displaying only those authorization selections in

the dialog that are relevant to your application, and eliminates unnecessary work by the

user, such as navigating through multiple QuickBooks menus and dialogs. Notice that the

user must be logged in as the QuickBooks administrative user in order to authorize these

preferences.

38 Chapter 4: Specifying Authorization Preferences

(c) 2013 Intuit Inc. All rights reserved.

How to Use the AuthPreferences Functionality

The AuthPreferences object is a property of the QB XML request processor. We’ll show

you how to instantiate this and set it in a code sample in just a moment. But first, let’s take

a look at what you can do with the object and its methods.

The AuthPreferences object has three write methods, which must be invoked BEFORE the

call to BeginSession:

• PutIsReadOnly. This causes the QuickBooks authorization dialog to display text

informing the user that its access will be read-only.

• PutUnattendedModePref. This has different effects depending on the parameter

specified:

> umpRequired, which causes the QuickBooks authorization dialog to display only

the selection choices of “No” (no authorization) or “Yes, allow access even if

QuickBooks is not running” (authorize unattended mode). In other words, you use

this value to tell the user you need to run in unattended mode if you’re going to run

at all.

> umpOptional, which causes the QuickBooks authorization dialog to display its

default selections and let the user pick. You would only use this setting if your

application didn’t need unattended mode.

• PutPersonalDataPref which has different effects depending on the parameter specified:

> pdpRequired, which causes the QuickBooks authorization dialog to not display the

personal information checkbox for user selection, and instead display a warning

that the application needs to access personal data such as SSN or credit card

information.

> pdpOptional, which causes the QuickBooks authorization dialog to display a

checkbox for user selection asking whether the user wants to allow the application

to access personal data such as SSN or credit card information. That is, your

application doesn’t absolutely require the access, although it could use data from

such access if it were granted.

> pdpNotNeeded, which causes the QuickBooks authorization dialog to not display

the personal information checkbox for user selection, and instead display an

informational message that the application will NOT access personal data such as

SSN or credit card information. That is, if your application doesn’t use any of that

data, the nice thing to do is let the user know up front and not prompt the user for

access you don’t need.

There are three Get methods (GetIsReadOnly, GetUnattendedModePref, and

GetPersonalDataPref) that return the authorization preferences currently in effect, but these

methods can only be invoked AFTER the call to BeginSession.

How the AuthPreferences Object Works 39

(c) 2013 Intuit Inc. All rights reserved.

IMPORTANT

Your code implementing the new authorization capabilities will
not set preferences on QB versions earlier than QuickBooks
2005. However, no errors will occur if you use
AuthPreferences and its related methods, so you can safely
write code and expect no failures. However, you may want to
do a check, using the AuthPreferences method
WasAuthPreferencesObeyed to determine whether the
QuickBooks version supports AuthPreferences or not.

Code Sample: AuthPreferences via the Request Processor

The following snippet shows the use of the AuthPreference object to set preferences in

AuthPreferences. This sample uses the request processor directly (QBXMLRP2Lib). We’ll

give a short QBFC snippet shortly.

Notice that this does not set QuickBooks authorization preferences (only the QuickBooks

administrator can do that) but it sets up AuthPreferences so that QuickBooks will display

the authorization dialogs that correspond to the preferences your applications has specified.

If (frmSDKTestPlus3.AuthPrefsDirty) Then

Dim prefs As QBXMLRP2Lib.AuthPreferences

Set prefs = qbXMLCOM.AuthPreferences

If (frmSDKTestPlus3.Unattended.Value) Then

prefs.PutUnattendedModePref umpRequired

Else

prefs.PutUnattendedModePref umpOptional

End If

prefs.PutIsReadOnly frmSDKTestPlus3.ReadOnly.Value

If (frmSDKTestPlus3.pdRequired.Value) Then

prefs.PutPersonalDataPref pdpRequired

ElseIf (frmSDKTestPlus3.pdNotNeeded.Value) Then

prefs.PutPersonalDataPref pdpNotNeeded

Else

prefs.PutPersonalDataPref pdpOptional

End If

End If

In this snippet, the parent form frmSDKTestPlus3 is checked to see whether any

preferences have been changed. If any changes were made, the various components in the

form are checked for new user selections and those choices are then set in the

AuthPreferences object.

NOTE

This snippet is for a sandbox type application that allows for a
toggling of the AuthPreferences requirements for test
purposes. Your application probably would not do this, but
would instead simply set the preferences in the way your
application requires.

40 Chapter 4: Specifying Authorization Preferences

(c) 2013 Intuit Inc. All rights reserved.

Code Sample: AuthPreferences via QBFC

The following snippet shows the setting of the AuthPreferences object in QBFC.

Dim SessionManager As QBSessionManager

Set SessionManager = New QBSessionManager

Dim MyAuthPrefs As IAuthPreferences

Set MyAuthPrefs = SessionManager.QBAuthPreferences

MyAuthPrefs.PutIsReadOnly

SessionManager.OpenConnection2 appID, appleName, ctLocalQBD

SessionManager.BeginSession "", omDontCare

What Happens as a Result of the AuthPreference Settings?

The next time the application connects to QuickBooks after any change to AuthPreferences,

the proper authorization dialog is displayed to the user. For example, if you set the

AuthPreferences such that access to personal data was required, the ability to run in

unattended mode was required, and you specified read-only access, then the authorization

dialog shown in Figure 4-2 on page 41 would be displayed to the user.

How the AuthPreferences Object Works 41

(c) 2013 Intuit Inc. All rights reserved.

Figure 4-2 Authorization Dialog for Read-Only, Personal Data, and Unattended Mode

If the user chooses to authorize, QuickBooks pops up the confirmation message shown in

Figure 4-3 on page 42.

42 Chapter 4: Specifying Authorization Preferences

(c) 2013 Intuit Inc. All rights reserved.

Figure 4-3 Authorization Confirmation

Notice that the confirmation messages lists all of the authorized access preferences.

Setting Authorization Preferences Within QuickBooks

If your application does not use the AuthPreferences object and methods to help the

QuickBooks administrator set authorizations properly, the QuickBooks administrator may

need to set additional authorization preferences or change existing authorization

preferences for integrated applications within QuickBooks by clicking on the Integrated

Applications icon in the QuickBooks Preferences window, then selecting Company

Preferences. Preferences that can be set by the administrator include the following:

• Disallowing or changing application access

• Enabling certificate date checking

• Listing authorized applications

• Granting auto-login privileges and assigning the name of the auto-login user

• Allowing application access to personal company data

Figure 4-4 on page 43 shows the window presented to the administrator for managing

integrated applications and their access to QuickBooks.

How the AuthPreferences Object Works 43

(c) 2013 Intuit Inc. All rights reserved.

Figure 4-4 Integrated Application Preferences

44 Chapter 4: Specifying Authorization Preferences

(c) 2013 Intuit Inc. All rights reserved.

Using Java with QB SDK 45

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 5 1

ACCESSING DESKTOP QUICKBOOKS EDITIONS 1

This chapter assumes that you have read about the basic communication model used for

accessing desktop QuickBooks editions, in Chapter 3, “The Communication Model and

Ways of Implementing It.”

Accessing desktop QuickBooks editions is pretty straightforward whether you use the

request processor or the QBFC convenience library. At bare minimum, there are only three

lines of code for the access: OpenConnection2, BeginSession, and ProcessRequest (or

DoRequests if you use QBFC). And two lines of housekeeping code when you’re finished:

EndSession and CloseConnection. We’ll cover that simple case in this chapter.

But there are a couple of other things you may want to know about as well. Such as

• Single user mode vs multi-user mode.

• Auto-login mode, which allows your application to run without an interactive user.

• How to specify which QB editions your application supports and which ones it doesn’t.

• How to tell your user which access rights your application needs in order to work. (This

isn’t covered here, but it is covered in Chapter 4, “Specifying Authorization

Preferences,”)

These topics are covered in this chapter.

Using Java with QB SDK

If you want to use Java with the QB SDK, you need to use a Java to COM bridge, for

example the Jacob bridge product. For more information, search the web, and take a look at

the blog Using the QuickBooks SDK via JACOB Java-Com Bridge.from Theoden’s Coding

Tips.

The programming samples included with the SDK also include a sample implementation

using a Java to COM bridge.

A Note About the Request Processor

The qbXML Request Processor is the gatekeeper between your application and

QuickBooks. The Request Processor implements the COM interface that allows your

application to establish a connection to QuickBooks and set up a working session for a

particular QuickBooks company file. Because it straddles the process boundary with

QuickBooks, the Request Processor is available even when QuickBooks is not running or a

working session for a specific company file has not yet been established.

http://www.molecularbear.com/blog/?p=60

46 Chapter 5: Accessing Desktop QuickBooks Editions

(c) 2013 Intuit Inc. All rights reserved.

NOTE

The Request Processor supplies an API that allows event
subscriptions without requiring a QuickBooks session. The
subscriptions go into effect the next time the company file is
opened, or when QuickBooks is next started. (For more
information, Chapter 14, “Event Notification.”)

How to Access QuickBooks

To access QuickBooks, your application needs to do this:

1. Open a connection to QuickBooks.

2. Start a session for working on a specific QuickBooks company file.

3. Send whatever requests you want to do something in QuickBooks.

4. When you’re done or before your application exits, end the session.

5. Then close the connection.

VB Code Snippets for Access if You Use qbXML

If you use qbXML, you need to use QBXMLRP2Lib, however your language does this,

such as by an import statement, or by specifying it in your project reference, Then, here’s

what the above steps 1 through 5 look like in code:

Dim MyQbXMLRP2 As QBXMLRP2Lib.RequestProcessor2

Set MyQbXMLRP2 = New QBXMLRP2Lib.RequestProcessor2

MyQbXMLRP2.OpenConnection2 "", "My Sample App", localQBD

Dim ticket As String

ticket = MyQbXMLRP2.BeginSession("", QBXMLRP2Lib.qbFileOpenDoNotCare)

‘ The variable “xml” here is a fully formed message request set:

‘ we left out that part to keep this as simple as possible

Dim sendXMLtoQB As String

sendXMLtoQB = MyQbXMLRP2.ProcessRequest(ticket, xml)

MyQbXMLRP2.EndSession ticket

MyQbXMLRP2.CloseConnection

Some Commentary on the Code Snippet

The OpenConnection2 call is interesting partly because of the third parameter, which we’ve

shown as localQBD. Other possibilities could be to use localQBDLaunchUI, which would

start QuickBooks in interactive mode.

The first parameter to BeginSession is the full path to the QuickBooks company file you

want to use. We show an empty string here because we are using whatever file is currently

open in QuickBooks. The second parameter is the file mode. This is where you specify

How to Access QuickBooks 47

(c) 2013 Intuit Inc. All rights reserved.

whether you’re accessing the company file in single user mode or multi-user mode, which

we’ll describe shortly. We specified the file mode of “do not care” which allows for either

multi-user or single-user mode, depending on whether the file is currently opened or not.

If the BeginSession call succeeds, you get back a session ticket which you need to supply as

a parameter for the various calls into the request processor, such as ProcessRequest and

CloseConnection.

VB Code Snippets for Access if You Use QBFC

If you use QBFC, you need to use the QBFC DLL however your language does this, such

as by an import statement, or by specifying it in your project reference. Then, here’s how

you access QuickBooks:

Dim MySessionManager As QBSessionManager

Set MySessionManager = New QBSessionManager

MySessionManager.OpenConnection2 “ “, “My Sample App”, ctLocalQBD

MySessionManager.BeginSession "", omDontCare

‘ “MyMsgRequestSet” here is a fully formed message request set:

‘ we left out that part to keep this as simple as possible

Dim MyDataExt_resp As IMsgSetResponse

Set MyDataExt_resp = MySessionManager.DoRequests(MyMsgRequestSet)

MySessionManager.EndSession

MySessionManager.CloseConnection

Some Commentary on the QBFC Code Snippet

The same commentary provided for the qbXML snippet above applies here. One interesting

difference you’ll notice is the absence of the session ticket when you use QBFC. That is

managed automatically by QBFC.

What Happens in the Call to BeginSession?

When your application makes a BeginSession call to QuickBooks, the Request Processor

checks to ensure that the following are true:

• The current QuickBooks supports the SDK (QuickBooks Version 10 or greater).

• The version of QuickBooks and the version of the company data file, if one was

specified, match one another. (If NULL or an empty string was specified, this task is

skipped.)

• The file access mode specified by your application and the mode in which the company

data file is currently open are compatible.

• The Request Processor is able to successfully launch the located, required version of

QuickBooks. If it cannot start QuickBooks, any number of problems might exist; for

48 Chapter 5: Accessing Desktop QuickBooks Editions

(c) 2013 Intuit Inc. All rights reserved.

instance, QuickBooks might not have been correctly installed (perhaps only partially

installed) or there might be some other problem with QuickBooks.

• If the application attempts auto login and if this permission has not been granted by the

QuickBooks administrative user, QuickBooks returns an error code to your application

in the BeginSession call.

If any of these tasks fail, your application will not be able to complete the login process or

connect to QuickBooks. However, in the event of failure, your application will have the

opportunity to present the user with direction on how to resolve the problem. For related

information, see Chapter 37, “Making Your Application Robust.”

Troubleshooting Errors in the BeginSession Call

For help with these and other errors, check out the IPP Developer website for more

information and a useful diagnostic tool called qbSDKDiag.

The qbSDKDiag tool turns on the maximum logging capability of QuickBooks and the

SDK, gathers important registry data about QuickBooks, starts QuickBooks, and attempts

to establish a connection with QuickBooks in interactive mode using QBXMLRP and

QBXMLRP2.

Having successfully connected in interactive mode, the user is then asked to enable

unattended access for the diagnostic tool and to close QuickBooks. The diagnostic tool then

attempts to connect with both QBXMLRP and QBXMLRP2 using unattended mode.

Finally, all the log files (qbsdklog.txt, qbinstancefinder.log, qbwin.log, and the diagnostic

log itself) are zipped up and e-mailed to the address supplied in the diagnostic application,

currently to IPP support.

Multiple Sessions versus a Single Session

A session gives your application access to QuickBooks data belonging to one company file.

Depending on whether your typical user deals with a single company file or multiple

company files in QuickBooks, you will have one or multiple sessions within a connection.

If your user typically deals with only one company’s data, you will probably open a

connection, begin a session, process multiple requests, and then end the session, as shown

in Figure 5-1 on page 49.

Using AuthFlags to Specify Support for QuickBooks Editions 49

(c) 2013 Intuit Inc. All rights reserved.

Figure 5-1 A single session within one connection.

If the user of your application often deals with multiple companies as, for example, a

professional accountant who manages finances for multiple organizations, your application

will probably open a connection and then begin and end several sessions on different

company files before finally closing the connection, as shown in Figure 5-2 on page 49.

Sessions do not overlap.

Figure 5-2 Multiple sessions within one connection.

In most cases, an application will send multiple requests to QuickBooks in a single session.

The processing is synchronous: your application must wait until one ProcessRequest call

completes execution and returns with the qbXML response data sent from QuickBooks

before issuing the next ProcessRequest call.

Using AuthFlags to Specify Support for QuickBooks Editions

Prior to QuickBooks 2006, the various editions of QuickBooks provided virtually the same

support for the various SDK requests. However, beginning with QuickBooks 2006, a new

edition called QuickBooks Simple Start provides support for a subset of SDK requests.

Consequently, to prevent applications from behaving unexpectedly while running on

QuickBooks Simple Start, the request processor now checks the AuthFlags property during

the call to BeginSession to determine whether your application supports QuickBooks

Simple Start.

50 Chapter 5: Accessing Desktop QuickBooks Editions

(c) 2013 Intuit Inc. All rights reserved.

For existing applications that aren’t designed for QuickBooks Simple Start, no code

changes are necessary, because by default, AuthFlags is set to support QuickBooks Pro,

Premier, and Enterprise.

However, if you are writing an application that does support QuickBooks Simple Start, you

need to explicitly set AuthFlags to indicate your application’s support of that edition.

Otherwise, if your application attempts to begin a session with QuickBooks Simple Start,

you will get an error when you call BeginSession.

Setting AuthFlags to Specify Support for a QuickBooks Edition

To specify which editions your application supports, you invoke the PutAuthFlags method

of the AuthPreferences object before you call BeginSession. The basic call sequence is

straightforward:

1. Instantiate the request processor

2. Instantiate the AuthPreferences object.

3. Construct the desired AuthFlags value

4. Invoke the PutAuthFlags method on AuthPreferences using the AuthFlags value you

just constructed.

The tricky part in all this is the constructing of the AuthFlags value. You need to know a

few facts other than its data type, which by the way, is an integer value (a Long in VB).

Internally, the editions are represented by the following enumerated values:

The ForceAuthDialog value is included as a convenience: if you including it when you

construct your AuthFlags, you cause QuickBooks to display the authorization dialog again

for the user to change the permissions they may have already set for your application.

To specify support for each edition, you simply OR the values for each edition you are

supporting. In the following VB snippet, we specify support for all of the QuickBooks

editions and force the display of the auth dialog to boot.

Dim authFlags As Long

authFlags = 0

authFlags = authFlags Or &H8&

authFlags = authFlags Or &H4&

authFlags = authFlags Or &H2&

authFlags = authFlags Or &H1&

authFlags = authFlags Or &H80000000

When we finish constructing the AuthFlags, we set it as follows:

Behavior Needed Value

SupportQBSimpleStart 0x1

 SupportQBPro 0x2

 SupportQBPremier 0x4

 SupportQBEnterprise 0x8

 ForceAuthDialog 0x80000000

More Information about Login Modes 51

(c) 2013 Intuit Inc. All rights reserved.

Dim qbXMLCOM As QBXMLRP2Lib.RequestProcessor2

Dim prefs As QBXMLRP2Lib.AuthPreferences

Set prefs = qbXMLCOM.AuthPreferences

prefs.PutAuthFlags (authFlags)

The SDK sample program SDKTestPlus3 provides an example of constructing the

AuthFlags a bit more selectively, ORring only those editions you choose through UI

components.

IMPORTANT

If you start your application by invoking BeginSession with
LocalQBLaunchUI AND you have SimpleStart, but do not set
the authFlags to specify Simple Start support, SimpleStart will
launch with the company file specified, and you’ll get an error
regarding the fact that your application doesn’t support
SimpleStart. Once Simple Start is launched in this scenario,
your application won’t have SDK access to Simple Start.

More Information about Login Modes

Integrated applications can log in to QuickBooks in one of two modes:

• In interactive mode, QuickBooks runs in the foreground, and its user interface is

displayed. The user logs in to QuickBooks and opens a company file. Subsequently,

your application is launched and “attaches” to the company file that has already been

opened. The user can interact directly with your application and with QuickBooks.

• In unattended mode (auto-login), QuickBooks runs in the background, and its user

interface may or may not be displayed, depending on the connection type you specify

in the call to OpenConnection2. The ctLocalQBD type either uses the local

QuickBooks currently running or, if not running, launches QB in unattended mode

(without UI, thus non interactively). If QuickBooks is not running, the

ctLocalQBDLaunchUI type launches it in interactive mode (the UI is displayed). If

your connection type doesn’t specify the launching of the QuickBooks UI, then

QuickBooks features are fully available to your application but not to the user. Notice

that whenever QuickBooks is started by the application rather than by the small-

business owner, it is in auto-login mode.

NOTE

When an application accesses a company file that was opened
by a user from the QuickBooks user interface, the application
has the same privileges as that logged-in user. In some cases,
the user can impose further restrictions via the preferences
for the application. (In QuickBooks, bring up preferences by
selecting Edit->Preferences->Integrated Applications-
>Company Preferences->Properties.)

52 Chapter 5: Accessing Desktop QuickBooks Editions

(c) 2013 Intuit Inc. All rights reserved.

Setting Up Auto-Login

You use the AuthPreferences object to inform the user that auto-login (unattended) mode is

required (Chapter 4, “Specifying Authorization Preferences.”). The proper dialog with the

auto-login prompt will be presented to the user for confirmation. If the user chooses not to

authorize your application’s requirements, then your application will not be allowed to

access the QuickBooks company. Notice that this is “all or nothing.” Either your

application gets all of its requirements or it is refused access to QuickBooks.

Alternatively, you can set up auto-login from within QuickBooks. Using this method, the

QuickBooks administrator sets the user name under which your application will run in

QuickBooks under Company Preferences, Properties, Access Rights, a window that is

accessible only to QuickBooks administrators (see Figure 5-3 on page 52).

Figure 5-3 QuickBooks window for allowing auto-login by an integrated application

If you don’t use AuthPreferences, be sure to tell your user that the QuickBooks

administrator must give your application the necessary authorizations.

What Happens if the Administrative User Deletes the Auto-Login User?

If an application is set up for auto-login, then a warning message is displayed to the

administrative user when that user attempts to delete. The message indicates that the user to

be deleted is used by an integrated application.

Limitations on Accessing Company Files 53

(c) 2013 Intuit Inc. All rights reserved.

IMPORTANT

If an application starts QuickBooks in auto-login mode, any
subsequent applications authorized for auto-login will have
the privileges of the first application during that session. The
first auto-login application sets the user for any subsequent
applications during the session. This is the user that is the
“active” user for all applications until all of the applications
end their sessions and QuickBooks exits.

Only One Auto-Login User per Application

Regardless of whether single-user or multi-user mode is specified for a given session, there

can be only one auto-login active during that session. Figure 5-4 on page 53 illustrates a

multi-user session, with four different users accessing the same company file. Because Joe

is designated as an auto-login user on System 4, no other users can log in automatically

until “Joe” (the auto-user) logs out. When multiple instances of an integrated application

are running on different systems and accessing the same company file, as shown in Figure

5-4 on page 53, each user must have a different name.

Figure 5-4 Multiple users accessing the same company file

Limitations on Accessing Company Files

Only one company file at a time can be accessed by integrated applications on any given

machine running QuickBooks. The company file that must be used by integrated

applications is the one currently opened by the user from the QuickBooks user interface, or

the company file that is currently open by an application that started QuickBooks in auto-

login mode.

54 Chapter 5: Accessing Desktop QuickBooks Editions

(c) 2013 Intuit Inc. All rights reserved.

Allowing Application Access to Personal Data

The Access Rights window shown in Figure 5-3 on page 52 also includes a checkbox that

allows your application access to personal data in the company file. Personal data can

include:

• Employee social security numbers

• Any field directly related to an employee’s salary or wages

• Anything related to credit card numbers or bank account numbers

Be sure to instruct the QuickBooks administrator to check this box if your application

requires access to personal employee or customer data. (Alternatively, your application can

require access to personal data using the AuthPreferences object, which is available for

QuickBooks 2005 and later.)

Single-User vs. Multi-User Mode

During a QuickBooks session, your application specifies whether to open the company data

file in single-user or multi-user mode. It is important to balance your needs with the overall

implications of selecting one mode over the other. Table 5-1 on page 55 summarizes the

different combinations. Another interesting case is that even when the integrated

application opens a company file in multi-user mode, other integrated applications can

access the company file, but no actual users can access that company file on the same

system.

IMPORTANT

If QuickBooks 2007 and later is running non hosted, SDK
applications starting QuickBooks in DoNotCare mode will open
QuickBooks in single-user mode.

Microsoft Windows Vista & Windows 7 and UAC 55

(c) 2013 Intuit Inc. All rights reserved.

Table 5-1 QuickBooks company file login mode access conditions and rIghts

Trade-offs of Using Single-User Mode

Here are some of the advantages and disadvantages of using single-user mode.

Advantages:

• Certain QuickBooks features require that a user operate in single-user mode. For

instance, a company file must be open in single-user mode for you to delete any of its

list items.

• Locking and opening protection. If the company file is not already opened by another

QuickBooks-integrated application, your application will be able to open it with

exclusive access (locking out other applications), gaining improved performance.

Disadvantages:

• Lockout. If your application attempts to open a company file in single-user mode and

that company file is already open in multi-user mode, your application will not be able

to access the company data file. Your application will be locked out. (If your

application specifies multi-user mode, it can share access to the company file.)

Microsoft Windows Vista & Windows 7 and UAC

On the released version of Windows Vista & Win 7, applications built with any version of

the QuickBooks SDK should work correctly with QuickBooks 2011 R7 and newer (and

QuickBooks Enterprise Solutions 11.0 R7 and newer), the latest available update release,

with the following additions:

Who started QuickBooks Mode Who may obtain access

Integrated Application Single-user All other integrated applications
= access

Integrated Application Multi-user QB users on same machine =
no access

All other integrated applications
= access

QB users on other machines =
access

QuickBooks User Single-user QB user already logged in

Only one integrated application
= access

QuickBooks User Multi-user QB users = access

Integrated applications = access

56 Chapter 5: Accessing Desktop QuickBooks Editions

(c) 2013 Intuit Inc. All rights reserved.

With User Access Control (UAC) ON - Both QuickBooks and the application accessing it

through the SDK can run with elevated user permissions (Run as Administrator) under

following setup for a successful SDK connection.

a. QuickBooks running as Administrator in AND Application accessing QuickBooks

through SDK running as Administrator.

b. QuickBooks in Unattended mode AND Application accessing QuickBooks through

SDK running as Administrator.

The following limitations are still in place

With UAC ON, either one of these – QuickBooks or SDK application cannot be run in

Elevated access.

a. Unsuccessful connection when QuickBooks in Standard user permission and SDK

Application running as Administrator.

b. Unsuccessful connection when QuickBooks running as Administrator and SDK

Application in Standard user permission.

Table 5-2 Use case for UAC

Cases UAC
Mode Of
Connection Client QuickBooks

SDK
Connection in
2011 R7

a. UAC ON Attended Elevated Elevated Successful

b. UAC On Unattended Eleveated Not Running Successful

Limitations:

a.

UAC ON Attended Standard Elevated Unsuccessful

b. UAC ON Attended Elevated Standard Unsuccessful

A Few Notes About Using QBFC 57

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 6 1

BUILDING REQUESTS IN QBFC AND IN QBXML 1

This chapter describes how to build requests using the QBFC library or the request

processor directly, via qbXML. Because the request processor API method requires you to

build valid qbXML request strings and parse the returned qbXML responses, this chapter

shows the use of Microsoft’s XML Services 4.0 DOM to build and parse the XML using

DOM documents.

A Few Notes About Using QBFC

The QBFC library provides a convenience layer that allows you to construct requests using

the familiar object and object property paradigm. You will notice that the convenience layer

is a thin layer, so consequently there are a lot of objects to contend with in QBFC. In fact,

each request is a separate object, and each request object has its own unique sub objects, for

example the line item add object for SalesOrders is different than the line item add object

for SalesReceipts.

Fortunately, the abundance of objects is not as daunting as it might seem. All of the

requests are built in the same way and in the same order, and the line items are appended to

their parent object in the same way as well.

NOTE

If your development environment and language supports
Intellisense, a list of the message set’s Append methods are
available from within your environment. You could also use
the Visual Studio Object Browser to look up the Append
methods.

Alternatively, you can look up the request name in the OSR and prefix that
name with Append and suffix it with Rq. Also, the top level object Tag
name in the OSR for each request entry is the name of the object that is
returned by the message set’s corresponding AppendRequest method.

Building a Request using QBFC

In QBFC, you build a message set object and fill it with the requests you want to send to

QuickBooks. You use the QBSessionManager object to do the building and the sending.

58 Chapter 6: Building Requests In QBFC and in qbXML

(c) 2013 Intuit Inc. All rights reserved.

IMPORTANT

You’ll notice there is no built-in way to get/set RequestID in
QBFC. You don’t need to manage RequestID when you use
QBFC because QBFC automatically assigns requestIDs to
requests within the message request set, from 0 to N. QBFC
automatically returns the responses in the ResponseList in the
exactìthe order of the requests.

What You Need to Do in QBFC

The followng general process for building requests is illustrated in Listing 6-1.

1. Instantiate the QB SessionManager object.

2. Create the request message set object (SessionManager.CreateMsgSetRequest).

3. Set any desired message set-level attributes in that message set object.

4. Append the desired request objects to the message set object.

5. Set all required or desired field values (see OSR) in that request object.

6. If the request contains line items, append the appropriate line item add object to the

request and set its field values.

7. If you want to add more requests, append the desired request objects to the message set

and set its values as described above.

8. Open a connection to QuickBooks.

9. Begin the session with the specified QuickBooks Company.

10. Invoke DoRequests to send the requests to QuickBooks.

11. Process the response.

12. If you’re done, end the session and close the connection.

Notice that the open connection and begin session calls are shown after the request is

constructed. This is not required. You can perform the open connection and begin session

calls at any time before the call to DoRequests. We made these calls at the end mainly to

point out that you don’t need to be connected to QuickBooks in order to construct requests.

Sample: Building a SalesOrder Using QBFC

Listing 6-1 shows an example in VB that constructs a SalesOrder request with two line

items and sends it to QuickBooks.

______ Listing 6-1 Building a SalesOrderAdd Request

Dim SessionManager As QBSessionManager

Set SessionManager = New QBSessionManager

Building a Request using QBFC 59

(c) 2013 Intuit Inc. All rights reserved.

‘ We’re going to use US QuickBooks and the 6.0 spec

Dim SalesOrderSet As IMsgSetRequest

Set SalesOrderSet = SessionManager.CreateMsgSetRequest("US", 6, 0)

‘ Need a separate Append* for each request in the MsgSetRequest object

‘ First set properties in the main body of the sales order

Dim salesOrder As ISalesOrderAdd

Set salesOrder = SalesOrderSet.AppendSalesOrderAddRq

salesOrder.CustomerRef.FullName.setValue "John Hamilton"

salesOrder.RefNumber.setValue "121345"

‘ Now add the line items. Every transaction with line items will look very similar to this

Dim SOLineItemAdder As ISalesOrderLineAdd

Set SOLineItemAdder = salesOrder.ORSalesOrderLineAddList.Append.salesOrderLineAdd

SOLineItemAdder.ItemRef.FullName.setValue "fee"

SOLineItemAdder.Quantity.setValue 3

SOLineItemAdder.Other1.setValue "gold"

‘ Add another line item. Notice our re-use of the SOLineItemAdder variable

Set SOLineItemAdder = salesOrder.ORSalesOrderLineAddList.Append.salesOrderLineAdd

SOLineItemAdder.ItemRef.FullName.setValue "fee"

SOLineItemAdder.Quantity.setValue 5

SOLineItemAdder.Other1.setValue "silver"

‘ OK, we’re done, send this to QB; for grins show results in a message box

‘ We close everything down when done for illustration only: you would keep the session and

‘ connection open if you were going to send more requests

SessionManager.OpenConnection2 appID, appName, ctLocalQBD

‘ Let’s use whatever company file happens to be open now

SessionManager.BeginSession "", omDontCare

Dim SOAddResp As IMsgSetResponse

Set SOAddResp = SessionManager.DoRequests(SalesOrderSet)

MsgBox SOAddResp.ToXMLString

SessionManager.EndSession

SessionManager.CloseConnection

Set SessionManager = Nothing

The Importance of the CreateMsgSetRequest Call

When you create the message set object, you need to specify the qbXML spec version that

this message set supports. The sample above creates a message set that supports version 6.0

of the qbXML specification. The purpose of this is to make sure that the currently installed

QBFC library and request processor can support the type of requests your application is

going to make. (In our example, we could have used 2.1, since that was the spec version

that first supported SalesOrderAdd.)

60 Chapter 6: Building Requests In QBFC and in qbXML

(c) 2013 Intuit Inc. All rights reserved.

Background Details About the MsgSetRequest Object

For the visually inclined, Figure 6-1 represents the message set request object.

Figure 6-1 The Request Message Set Object

You need to be aware of the request message set methods and properties that are available

for your use. The various Append methods are used to add request objects of a specific type

to the message set. Each Append method call returns a corresponding request object that

must be filled with property values as desired.

• The Attributes property is used to set message set-level attributes: currently continue

on error and stop on error are the supported attributes. We’ll describe this attribute later

in this chapter.

• The ClearRequests method empties the message set once you’ve invoked DoRequests

and are otherwise finished with the original request. After you clear out the message set

object, you can fill it again with new requests that you want to send. It saves some

overhead.

• The RequestList method returns the list (IRequestList) of request objects in the

message set. IRequestList has a count property and a GetAt (index) method to support

retrieval of requests from the list.

• The ToXMLString method returns a complete and valid qbXML string that represents

the message set object and all its requests. This is useful for diagnostic purposes or if

you simply want to make sure you are building the objects as you expect.

• The Verify method can be used before the call to DoRequests to make sure the

requests are fully formed (all required fields have been set) and valid. However, the

DoRequests method call also performs this checking automatically.

Building a Request using QBFC 61

(c) 2013 Intuit Inc. All rights reserved.

Another View of the Message Set Request Structure

Figure 6-2 on page 61 shows a more detailed view of the logical arrangement of the

individual requests in a request message set, along with some sample property values.

Figure 6-2 Request Message Set Structure

The figure shows a message set for a transaction containing two SalesOrderAdd requests.

Each SalesOrder usually has a separate line item for each item ordered. Notice that the line

item objects also have properties that need to be set in order to finish constructing the

request. There can be as many line item objects as you need.

62 Chapter 6: Building Requests In QBFC and in qbXML

(c) 2013 Intuit Inc. All rights reserved.

The basic message set structure shown in Figure 6-2 is the same for every request object

that has line items: these are usually transactions. If the object is a list object, which does

not contain line items, such as Customer, you don’t add any line item sub objects as shown

in the sample figure. Instead you simply set the object properties as shown in the top of the

figure.

Notice the OnError attribute setting of the message set. This specifies how errors in the

individual requests are handled. If you specify roeContinue, as the sample does, then the

failure of one request in the message set won’t prevent other requests from being processed.

If you specify roeStop, then an error in one request stops the processing of any succeeding

requests.

Building a qbXML Request

Building a qbXML request and sending it to QuickBooks is simply a matter of writing out a

valid qbXML string that contains the requests you want and then sending them to

QuickBooks. However, because building syntactically correct XML “by hand” is so tedious

and prone to error, we strongly recommend the use of technology that does all the tedious

stuff for you (angle brackets, start and end tags, and so on), so you can focus on including

those qbXML elements that you want.

What You Need to Do in qbXML using a DOM Document

Our samples show the use of Microsoft XML (MSXML) API DOMDocument, a

technology which is currently free from Microsoft. When you build the qbXML, you

should refer to the Onscreen Reference (OSR) for details on required request elements.

Figure 6-3 on page 62 shows the general steps in building a request using a DOM

document.

Figure 6-3 Building a qbXML Request

Building a qbXML Request 63

(c) 2013 Intuit Inc. All rights reserved.

The following VB code snippet shows the qbXML for adding a new customer, with just a

few of the available fields filled out, to keep things simple. Once the request is filled out,

our code snippet prepends the required header information and sends the completed XML

string to qbXML via the request processor.

' Build the request XML

Dim builder As New DOMDocument40

Dim QBXML As IXMLDOMNode

‘After the header tags, <QBXML> is always the first element tag,

‘followed by the message set <QBXMLMsgsRq>

Set QBXML = builder.createElement("QBXML")

builder.appendChild QBXML

Dim msgsRq As IXMLDOMElement

Set msgsRq = QBXML.appendChild(builder.createElement("QBXMLMsgsRq"))

‘Set attributes on the message set

msgsRq.setAttribute "onError", "continueOnError"

Dim CustomerAddRq As IXMLDOMElement

Dim CustomerAdd As IXMLDOMElement

Set CustomerAddRq =

msgsRq.appendChild(builder.createElement("CustomerAddRq"))

CustomerAddRq.setAttribute "requestID", "1"

Set CustomerAdd = CustomerAddRq.appendChild(builder.createElement

("CustomerAdd"))

Dim dataElement As IXMLDOMElement

If firstName <> "" Then

Set dataElement = CustomerAdd.appendChild(builder.createElement

("FirstName"))

dataElement.appendChild builder.createTextNode(firstName)

End If

If lastName <> "" Then

Set dataElement = CustomerAdd.appendChild(builder.createElement

("LastName"))

dataElement.appendChild builder.createTextNode(lastName)

End If

‘The request is built except for the headers: so build these and

‘append the request to them:

requestXML = "<?xml version=""" & "1.0" & """?>"

requestXML = requestXML + "<?qbxml version=""" & "6.0" & """?>" +

builder.xml

‘Start a QB session and send the request

Dim qbXMLRP As QBXMLRP2Lib.RequestProcessor2

Set qbXMLRP = New QBXMLRP2Lib.RequestProcessor2

Dim Ticket As String

qbXMLRP.OpenConnection2 cAppID, cAppName, localQBD

Ticket = qbXMLRP.BeginSession(qbfilename, qbFileOpenDoNotCare)

64 Chapter 6: Building Requests In QBFC and in qbXML

(c) 2013 Intuit Inc. All rights reserved.

responseXML = qbXMLRP.ProcessRequest(ticket, requestXML)

qbXMLRP.EndSession ticket

qbXMLRP.CloseConnection

Set qbXMLRP = Nothing

Processing a Response Using QBFC 65

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 7 1

HANDLING RESPONSES USING QBFC OR QBXML 1

This chapter describes how to handle responses using the QBFC library or the request

processor API.

IMPORTANT

You’ll notice there is no built-in way to get/set RequestID in
QBFC. You don’t need to manage RequestID when you use
QBFC because QBFC automatically assigns requestIDs to
requests within the message request set, from 0 to N. QBFC
automatically returns the responses in the ResponseList in the
exactìthe order of the requests.

Processing a Response Using QBFC

Processing responses using QBFC is somewhat like building requests, only in reverse.

When you invoke DoRequests to send the requests to QuickBooks, DoRequest returns an

IMsgSetResponse object. This object contains all of the response data, so you need to know

how to traverse this object and the other objects it contains.

IMPORTANT

Not all invocations of DoRequest will result in a response with
StatusCode and StatusMessage. Certain failures will return
only an HRESULT indicating the nature of the failure.

Figure 7-1 shows the generalized method for getting response data.

66 Chapter 7: Handling Responses Using QBFC or qbXML

(c) 2013 Intuit Inc. All rights reserved.

Figure 7-1 Getting Response Data

Processing Responses: QBFC Sample Code

The following code snippet shows the response to an ItemInventoryAdd request. Because

this is not a query, the response will contain only the Ret object and not the Ret list, which

would have to be processed further.

NOTE

In the sample, notice the response type. You can look up all
the response types in the Visual Studio object browser under
the ENResponseType or you can construct them from the
response name by prefixing the response name with rt, for
example, the type for an ItemInventoryAddRs response is
rtItemInventoryAddRs.

Also, the OSR is useful in looking up the Ret object and Ret list names for
each Response. The Ret or Ret list for the response is listed at the top of
the OSR entry for each response.

‘Send the request message and get the response message: then get the first

‘response message. This sample only expects one response

Dim responseMsgSet As IMsgSetResponse

Dim response As IResponse

Set responseMsgSet = sessionManager.DoRequests(requestMsgSet)

Set response = responseMsgSet.ResponseList.GetAt(0)

Processing a Response Using QBFC 67

(c) 2013 Intuit Inc. All rights reserved.

‘Make sure the response type is the expected ItemInventoryAddRs type

‘then get the expected IItemInventoryRet object data: we only want ListID

Dim itemInventoryListID As String

If (Not response. Is Nothing) Then

Dim responseType As Integer

responseType = response.Type.GetValue

Dim j As Integer

‘Notice that we make an implicit upcast here (supported in VB),

‘upcasting the detail to the itemInventoryRet type. In other languages,

‘you must do an explicit upcast, for example, in VB.Net:

‘itemInventoryRet = response.Detail as itemInventoryRet

If (responseType = rtItemInventoryAddRs) Then

Dim itemInventoryRet As IItemInventoryRet

Set itemInventoryRet = response.Detail

itemInventoryListID = itemInventoryRet.ListID.GetValue

End If

End If

The code snippet below shows how to get data from a query response, which does have a

Ret list of Ret objects.

‘Send the request message and get the response message: then get the first

‘response message. This sample only expects one response

Dim responseMsgSet As IMsgSetResponse

Dim response As IResponse

Set responseMsgSet = sessionManager.DoRequests(requestMsgSet)

Set response = responseMsgSet.ResponseList.GetAt(0)

'We’re expecting an ItemInventoryQuery response.

If (Not response.Detail Is Nothing) Then

Dim responseType As Integer

responseType = response.Type.GetValue

Dim j As Integer

‘Get the ret list

If (responseType = rtItemInventoryQueryRs) Then

Dim itemInventoryRetList As IItemInventoryRetList

Set itemInventoryRetList = response.Detail

Dim itemInventoryRet As IItemInventoryRet

ItemFlexGrid.Rows = (1 + itemInventoryRetList.Count)

68 Chapter 7: Handling Responses Using QBFC or qbXML

(c) 2013 Intuit Inc. All rights reserved.

‘load each ret object from the list into a separate row in the

‘grid control to display certain ret object fields

For j = 0 To itemInventoryRetList.Count - 1

Set itemInventoryRet = itemInventoryRetList.GetAt(j)

Set itemInventoryRet = itemInventoryRetList.GetAt(j)

If (Not itemInventoryRet.Desc1 Is Nothing) Then

ItemFlexGrid.Col = 0

ItemFlexGrid.Row = j + 1

ItemFlexGrid.Text = itemInventoryRet.ListID.GetValue

ItemFlexGrid.Col = 1

ItemFlexGrid.Text = itemInventoryRet.FullName.GetValue

ItemFlexGrid.Col = 2

ItemFlexGrid.Text = itemInventoryRet.SalesDesc.GetValue

ItemFlexGrid.Col = 3

ItemFlexGrid.Text = itemInventoryRet.QuantityOnHand.GetValue

End If

Next j

End If

End If

In the preceding code sample, an item inventory query is sent to get a list of inventory items

and display the list ID, fullname, description, and on hand quantity from each item in a VB

flex grid control. We just get the ret list, and in the same loop that we use to go through the

ret list, we also populate each row in the flex grid control.

Background Information: Understanding IMsgSetResponse

The IMsgSetResponse object is always returned unless DoRequest fails. IMsgSetResponse

contains a response list that has one or more response objects, as shown in Figure 7-2.

Processing a Response Using QBFC 69

(c) 2013 Intuit Inc. All rights reserved.

Figure 7-2 Response Message Set Structure

As shown in Figure 7-2, a response object that is a query response contains a Ret list object

that contains potentially multiple Ret objects. A response object that is not a query response

contains only one Ret object and no Ret list. This difference is crucial when it comes to

processing the response data. We’ll describe these in more detail shortly.

Also as shown in the figure, you’ll need to be aware of these response object methods:

• The ResponseList method returns the IResponseList object containing the individual

response objects in the message set. IResponseList has a count property and a GetAt

(index) method to support retrieval of responses from the list.

• The ToXMLString method returns a complete and valid qbXML string that represents

the response message set object and all its individual responses. This is useful if you

want to dump out the response message to see the contents either for diagnostic

purposes or if you want to make sure you are getting the data you expect.

Background Information II: IResponse

The data, that you are interested in is contained in the IResponse. How do you get the

IResponse from the response message set?

To get the individual responses contained in the response message set,

70 Chapter 7: Handling Responses Using QBFC or qbXML

(c) 2013 Intuit Inc. All rights reserved.

1. Invoke ResponseList on the response message object to get the IResponseList

2. Use the IResponseList Count and GetAt methods to get the individual IResponse

objects.

Ok, you have an IResponse, which is response data to one of the requests that was sent to

QuickBooks. How do you traverse IResponse to get the response data from it? This is a

little tricky, since the IResponse can be either an object or another list.

To show you what we mean, take a look at Figure 7-3:

Processing a Response Using QBFC 71

(c) 2013 Intuit Inc. All rights reserved.

Figure 7-3 The IResponse Object

As shown in the figure, an IResponse that is a query response has a Ret list object

containing one or more Ret objects. The retCount, iteratorID, and iteratorRemainingCount

properties are provided to support getting the individual Ret objects from the Ret list.

72 Chapter 7: Handling Responses Using QBFC or qbXML

(c) 2013 Intuit Inc. All rights reserved.

The IResponse that is not a query response has no ret list. It has only the single Ret object,

from which data can be extracted.

Useful IResponse Methods/Properties You’ll Need to Use

IMPORTANT

Not all invocations of DoRequest will result in a response with
StatusCode and StatusMessage. Certain failures will return
only an HRESULT indicating the nature of the failure.

The IResponse object has these methods and properties:

• The Detail method does different things depending on whether the response is a query

response or not. For a query response, the Detail method returns the Ret list, which can

be looped through to get the individual Ret objects. For non query responses, Detail

returns the Ret object itself.

• Notice that each request has a corresponding Ret object, for example,
ItemInventoryAddRq has the response Ret object of IInventoryRet.

• Notice also that CompanyQuery is a special request that is treated as a
non-query request and response

• The iteratorID property returns the iterator ID, which is used only for query responses

whose originating request was set up to use iterators.

• The iteratorRemainingCount property returns the number of objects remaining in the

iteration. This is used only for query responses whose originating request was set up to

use iterators..

• The retCount property returns the number of Ret objects contained in the Ret list.It is

used only for query responses.

• The StatusCode property returns the status code of the response. Every response has a

status code indicating success (the value zero) or a non zero code that indicating the

nature of the failure.

• The StatusMessage property returns the a text description of the status code in the

response. Every response has a status message.

• The StatusSeverity property returns the severity level of the error.

• The Type property identifies the response type. This is useful if you want to make sure

the response you are processing is of the expected type. You can invoke GetValue to get

the type as an enumerated value, which is the easiest way to do a comparison with an

expected type. Alternatively, you can invoke GetAsString to get the string

representation of the type.

Processing a qbXML Response

The response XML string is returned from the ProcessRequests API call that sent the

original request set to QuickBooks. The suggested way to process that qbXML response

message set is to load it into a DOM document and walk its node list as shown in the

following pseudocode and Visual Basic code sample.

Processing a qbXML Response 73

(c) 2013 Intuit Inc. All rights reserved.

What You Need to Do to Process a Response in qbXML

Figure 7-4 on page 73 shows the general process of getting response data using DOM

documents.

Figure 7-4 Processing qbXML Responses

Processing a Response Message Set: Sample Code

The following code snippet shows how to load the response message set into the DOM

document and walk the node list for response data. Notice that there can be more than one

response in the message set to process.

Dim retStatusCode As String

Dim retStatusMessage As String

Dim retStatusSeverity As String

' Create xmlDoc Obj

Dim xmlDoc As New DOMDocument40

Dim objNodeList As IXMLDOMNodeList

' Node objects

Dim objChild As IXMLDOMNode

Dim custChildNode As IXMLDOMNode

Dim attrNamedNodeMap As IXMLDOMNamedNodeMap

Dim i As Integer

Dim ret As Boolean

Dim errorMsg As String

' Get CustomerAddRs nodes list

Set objNodeList = xmlDoc.getElementsByTagName("CustomerAddRs")

For i = 0 To (objNodeList.length - 1)

' Get the CustomerRetRs

Set attrNamedNodeMap = objNodeList.Item(i).Attributes

' Get the status Code, info and Severity

retStatusCode = attrNamedNodeMap.getNamedItem("statusCode").nodeValue

retStatusSeverity = attrNamedNodeMap.getNamedItem

("statusSeverity").nodeValue

retStatusMessage = attrNamedNodeMap.getNamedItem

("statusMessage").nodeValue

74 Chapter 7: Handling Responses Using QBFC or qbXML

(c) 2013 Intuit Inc. All rights reserved.

' Walk through the child nodes of CustomerAddRs node

For Each objChild In objNodeList.Item(i).childNodes

' Get the CustomerRet block

If objChild.nodeName = "CustomerRet" Then

' Get the elements in this block

For Each custChildNode In objChild.childNodes

If custChildNode.nodeName = "ListID" Then

resListID = custChildNode.Text

ElseIf custChildNode.nodeName = "Name" Then

resCustName = custChildNode.Text

ElseIf custChildNode.nodeName = "FullName" Then

resCustFullName = custChildNode.Text

End If

Next

End If ' End of customerRet

Next ' End of customerAddret

Next

 75

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 8 1

CREATING QUERIES 1

Query requests ask QuickBooks for data that meets specified criteria. Often, there are

multiple ways to obtain the same data from QuickBooks, but depending on the type of

query you send, the returned objects contain different elements and differing amounts of

related detail.

There are several basic types of query:

• List query, which returns list objects.

• Object-specific transaction query, which returns complete data from the specified

transactions.

• Generic transaction query, which returns a common subset of data (common to all

transaction types) for the specified transactions.

• Reports

This chapter describes list queries, object-specific queries, and the generic transaction

query. Reports are covered separately in due to their special characteristics.

When to Use a Query vs a Report

Although reports are covered in a separate chapter, it may be helpful to consider upfront

whether you need to use a simple query of the types described in this chapter or whether

you should really be using a report.

Whether you use a simple query request or a report request depends on exactly what data

you need and how you plan to use it. If you need a simple snapshot of one or more objects

then try a query request. If you need a more complete view, across multiple objects and

over a time period then use a report. Also, some collections of information are more simply

expressed in a report.

Different Ways of Using Queries to Get the Same Data

There are sometimes a number of ways to get at the same data. For example, suppose you

wanted to obtain customers with unpaid balances:

• Suppose you want to write collection letters to the customers with unpaid balances.

This task requires that you have both the names and addresses of the customers. In this

case, you could use a CustomerQueryRq and specify a TotalBalance greater than zero.

The response would return a list of customer objects.

• Suppose you want to create statements for the customers with unpaid balances. In this

case, you could use an InvoiceQueryRq and specify NotPaidOnly for PaidStatus.

76 Chapter 8: Creating Queries

(c) 2013 Intuit Inc. All rights reserved.

• A third way to obtain this information is to issue a Collections Report, which is a type

of AgingReportQueryRq. This returns the data you’re seeking, but in report form rather

than in the form of a particular QuickBooks object.

Getting a Count of Query Objects

In some instances, you may want to get an approximate count of the objects that will be

returned in a particular query, for example if you want to allocate enough memory or break

down the returned data in manageable chunks. Queries have an attribute called metaData,

which can be set so that no objects are returned in the query, just an approximate count. The

reason the count is approximate is that other users can add or delete objects between the

time you query for the count and the time you query for the objects.

Filters

Filters enable you to specify selection criteria for the objects or categories of objects that

are returned by QuickBooks in response to a query. If multiple filters are specified, the

results are ANDed. In general, filters have two general purposes:

• To obtain a set of objects that meet specified criteria

• To limit the number of objects returned in a response to a manageable quantity

Filters can be grouped into two general categories: filters that operate on lists and filters

that operate on transactions.

NOTE

This chapter presents filters conceptually and, therefore, not
always in the same order as they appear in the actual qbXML
request. Be sure to check out the exact order and syntax for
each request in the Onscreen Reference for your target
QuickBooks product and the API you are using.

Limiting the Number of Objects Returned

There are two ways to limit the data returned from a query. The best way is to use the

iterator feature, which is specific to queries. This feature is available only to desktop

editions QB 2006 and later using qbXML spec 5.0 and greater.

The second way is to use the IncludeRetElement feature, which is a feature common to

nearly all qbXML requests, not just queries.

Limiting the Number of Objects Returned 77

(c) 2013 Intuit Inc. All rights reserved.

Using Iterators to Walk Through Large Query Returns

The iterator attribute provided with most query types also allows you to break down query

results in smaller and more manageable chunks of data. An iterator results in responses that

contain only the specified number of objects. Iterators are only valid for the application that

starts them, and they are only valid for the current QuickBooks session. (Once the current

QuickBooks session ends, or QuickBooks is shut down, all the iterators go away.)

IMPORTANT

Starting an iterator preloads the set of things that are going
to be returned to you and gives you the specified number
(MaxReturn) that you requested in each iteration. However,
the iterator DOES NOT remember all aspects of your query
(just the filters!). Accordingly, if you use other fields in the
query, such as IncludeRetElement, then you have to repeat
those in each continuation of the iterated query!

Starting an Iteration

How do iterators work? The iterator is created when a query contains the iterator attribute

set to Start, along with a MaxReturn value specifying how many records are to be returned

in each iteration. The response to that first query iteration contains, along with the response

data, an IteratorID value that uniquely identifies that iterator. This is important because you

can have many iterators active at the same time. The following example shows how to start

an iteration

<?xml version="1.0" ?>

<?qbxml version="5.0" ?>

<QBXML>

<QBXMLMsgsRq onError="stopOnError">

<CustomerQueryRq requestID="5001" iterator="Start">

<MaxReturned>10</MaxReturned>

<IncludeRetElement>ListID</IncludeRetElement>

</CustomerQueryRq>

</QBXMLMsgsRq>

</QBXML>

The response contains the returned objects, with the iteration-related information returned

in the response attributes, as shown in the following snippet:

<CustomerQueryRs requestID = "5001" statusCode = "0" statusSeverity =

"INFO" statusMessage = "..." iteratorRemainingCount = "50" iteratorID =

"{D7355385-A17B-4f5d-B34D-F34C79C3E6FC}">

In the query responses, notice the attribute called iteratorRemainingCount that contains the

number of objects left in the iteration. You must check for a value of 0 because that means

not only that there are no more objects, but more importantly, it means that the Iterator is

now removed from memory and therefore further attempts to access it will fail: its

78 Chapter 8: Creating Queries

(c) 2013 Intuit Inc. All rights reserved.

iteratorID is no longer valid. Other than checking for this remaining count value of 0, you

can use this iteratorRemainingCount value any way you want, for example, to change the

current MaxReturned settings.

IMPORTANT

When the remainingCount value returned in the query
response contains a value of 0, this indicates that the
corresponding Iterator can no longer be used.

Continuing the Iteration

To continue a particular iteration, you simply issue the same query request again, but this

time with the iterator value now set to Continue, and the IteratorID field set to the

IteratorID value returned from the first query iteration. Remember that the iterator DOES

NOT remember all aspects of your query (just the filters!). Accordingly, if you use other

fields in the query, such as IncludeRetElement, then you have to repeat those in each

continuation of the iterated query.

A qbXML example is shown below:

<?xml version="1.0" ?>

<?qbxml version="5.0" ?>

<QBXML>

<QBXMLMsgsRq onError="stopOnError">

<CustomerQueryRq requestID="5001" iterator="Continue"

iteratorID="{D7355385-A17B-4f5d-B34D-F34C79C3E6FC}">

<MaxReturned>10</MaxReturned>

<IncludeRetElement>ListID</IncludeRetElement> </

CustomerQueryRq>

</QBXMLMsgsRq>

</QBXML>

Once a query has been issued with an iterator, subsequent iterations (i.e., queries using that

same iteratorID and the iterator attribute set to Continue) cannot change any filtering. The

only thing that can be changed during an iteration is the MaxReturned value.

Stopping the Iteration

At any point during an iteration, you can stop the iteration and destroy the iterator (freeing

up memory) by issuing the query request with the iterator attribute set to “Stop” and the

iteratorID set to the proper iterator ID. It is a good practice to do this if you want to stop an

iteration before it is complete, otherwise the iterator will continue to be held in memory

until the current QuickBook session ends, potentially occupying a large amount of memory.

(If your application crashes before cleaning up its iterators, the iterators it was using can be

removed from memory by stopping QuickBooks and starting it again.)

Limiting the Number of Objects Returned 79

(c) 2013 Intuit Inc. All rights reserved.

IMPORTANT

If you exhaust the iteration, so that the last query shows an
iteratorRemainingCount value of 0, you need not and in fact
cannot issue the query with the iterator attribute set to
“Stop.” The iteratorID you would have to supply is no longer
valid.

Limiting Returned Data Using IncludeRetElement

IMPORTANT

Although IncludeRetElement is mentioned here for queries, it
is designed for use with Add and Mod operations as well, to
limit response data to those data that you want.

You use the IncludeRetElement tag in the request to limit the data that will be returned in

the response. Inside this tag you specify the name of the top-level element or aggregate that

is to be returned in the response to the request. You cannot specify elements within an

aggregate, for example, you cannot specify a City within an Address: you must specify

Address and will get the entire address.

IMPORTANT

You can specify multiple IncludeRetElement lines if you want
multiple aggregates or elements returned. Each aggregate or
element must be specified in a separate IncludeRetElement
line. The specified tag name is not parsed, so you must be
especially careful to supply a valid tag, properly cased,
because no error is returned in the status code if you specify
an invalid tag name.

The following sample customer query shows where you need to place the

IncludeRetElement tag:

<?xml version="1.0"?>

<?qbxml version="4.0"?>

<QBXML>

<QBXMLMsgsRq onError="continueOnError">

<CustomerQueryRq requestID="2">

<IncludeRetElement>FullName</IncludeRetElement>

</CustomerQueryRq>

</QBXMLMsgsRq>

</QBXML>

The following response shows what would be returned in the customer query listed above:

80 Chapter 8: Creating Queries

(c) 2013 Intuit Inc. All rights reserved.

<?xml version="1.0" ?>

<QBXML>

<QBXMLMsgsRs>

<CustomerQueryRs requestID="2" statusCode="0" statusSeverity="Info"

statusMessage="Status OK">

<CustomerRet>

<FullName>Abercrombie, Kristy</FullName>

</CustomerRet>

<CustomerRet>

<FullName>Abercrombie, Kristy:Family Room</FullName>

</CustomerRet>

......more customer names.......

</CustomerQueryRs>

</QBXMLMsgsRs>

</QBXML>

EmployeeQuery and IncludeRetElement

Notice that prior to QuickBooks 2005, an EmployeeQueryRq would return a permissions

error if the currently logged in QuickBooks user did not have “Payroll and Employees”

permission. This would occur even if you only needed data that was not restricted.

However, because of IncludeRetElement (new in SDK 4.0), the situation has changed

somewhat. You can use that new element to specify fields in the EmployeeRet object that

do not require “Payroll and Employees” permissions. Such a query would return the

unrestricted data (such as Name) from an EmployeeQueryRq even if the logged in user

lacks "Payroll and Employees” permissions.

Using MaxReturned

Most queries include the MaxReturned element, which is actually a delimiter that specifies

the maximum number of objects to return in each response. If your application deals with

large amounts of data, it is recommended that you use this delimiter to ensure acceptable

application performance.

If you’re using filters, the filters are applied first and then the MaxReturned value is applied

if needed. When you use MaxReturned, your application is responsible for keeping track of

the last object returned and specifying the start of the next search, as described in the

following paragraphs.

Basically, you’ll follow this technique:

1. 1. Issue a query (for example, a CustomerQueryRq request) with a MaxReturned

equal to a reasonable amount of data (for example, 100). This first query does not

include a From/To specification.

2. 2. For subsequent queries, issue the same type of query (here, a CustomerQueryRq

request) and specify the starting point for the next query. For example, if you are

dealing with an alphabetized list of names, you will use the

NameRangeFilter:FromName field and specify the last object that was returned in the

previous response. Do not specify the ToName field. (The value specified for

MaxReturned will determine the number of objects returned in the response.)

List Queries: Commonly Used Filters 81

(c) 2013 Intuit Inc. All rights reserved.

List Queries: Commonly Used Filters

List queries generally support the following types of filters:

• ListID or FullName

• Active status

• Filtering by date and time modified

• Matching criterion for names

• Ranges for names

You can optionally ask that each returned object also contain the Data Extension values for

one or more Owner IDs.

ListID or FullName

List queries allow you to specify a ListID or a FullName, or to specify other criteria for the

list items that are to be returned. Specifying ListIDs is the fastest way to obtain list items

with a query.

Listing 8-1 is an example of a customer query request that specifies ListIDs.

_______Listing 8-1 List filter using a set of ListIDs as the selection criteria

<QBXML>

 <QBXMLMsgsRq onError = "continueOnError">

 <CustomerQueryRq requestID = "101">

 <ListID>150000-933272658</ListID>

 <ListID>160000-933272658</ListID>

 <ListID>180000-933272658</ListID>

 <ListID>940000-1071506775</ListID>

 <ListID>950000-1071506823</ListID>

 </CustomerQueryRq>

 </QBXMLMsgsRq>

</QBXML>

Listing 8-2 shows a customer query request that specifies a FullName to obtain all customer

objects for the purchase of an AirRow transporter by the customer DaVinci.

_______Listing 8-2 List filter using FullName as the search criteria

<CustomerQueryRq requestID = "591">

<FullName>DaVinci:AirRow</FullName>

</CustomerQueryRq>

82 Chapter 8: Creating Queries

(c) 2013 Intuit Inc. All rights reserved.

Active Status

List queries allow you to select a list object based on whether it is currently active. The

ActiveStatus filter allows you to specify ActiveOnly (the default), InactiveOnly, or All.

Filtering by Date Modified

List queries can filter for objects modified during a specified range of dates. Using the

FromModifiedDate and ToModifiedDate filters, you can specify “From” and “To”

modification dates, or simply a beginning or ending cutoff modification date. Dates are of

type DATETIMETYPE, which specifies both date and time (up to seconds). Listing 8-3

shows a customer query request for all customer objects that are currently enabled for use

by QuickBooks and that also have been modified any time between the beginning of day on

October 12, 2003, and end of day on October 15, 2003 (see “Default Values for Date/

Time,” below).

______ Listing 8-3 List filter using ActiveStatus and inclusive date range

<CustomerQueryRq requestID = "541">

<ActiveStatus>ActiveOnly</ActiveStatus>

<FromModifiedDate>2003-10-12</FromModifiedDate>

<ToModifiedDate>2003-10-15</ToModifiedDate>

</CustomerQueryRq>

Default Values for Date/Time

The following tables list default values assigned by the SDK when all or part of the time is

not specified. When a time zone is not specified, local time is assumed.

Table 8-1 Default values for “From” date/times

NOTE: If “From” is not specified at all, the start period is the earliest date possible.

“From” is
specified Start period Example

Date only Beginning of the day 10/1/02 means 10/1/02 00:00:00

Date and hour only Beginning of the hour 10/1/02 8 means 10/1/02 8:00:00

Date, hour, and

minute only

Beginning of the minute 10/1/02 8:20 means 10/1/02 8:20:00

Date, hour, minute,

and second

The second 10/1/02 8:20:40 means 10/1/02 8:20:40

List Queries: Commonly Used Filters 83

(c) 2013 Intuit Inc. All rights reserved.

Table 8-2 Default values for “To” date/times

NOTE: If “To” is not specified at all, the end period is up to the last date used.

Date Ranges (Versions 1.1 and 2.0)

The acceptable range of dates for FromModifiedDate and ToModifiedDate changed from

SDK version 1.1 to version 2.0.

• For version 2.0 and above, the range is from 1970-01-01 to 2038-01-19T03:14:07

(2038-01-18T19:14:07-08:00 PST).

• For versions 1.1 and 1.0, the range is different for list objects and transaction objects.

For list objects, the range is from 1970-01-01 and 2038-01-19T03:14:07 (2038-01-

18T19:14:07-08:00 PST).

For transaction objects in versions 1.1 and 1.0, the range is from 01/01/1901 to 12/31/

9999.

Match Criterion for Names

Another useful filter available in most list queries is the NameFilter, which allows you to

obtain list objects that match a specified string. You specify both the string itself (which can

be all or a portion of a FullName value) and the MatchCriterion, which can be StartsWith,

Contains, or EndsWith. For example, you could use this filter with a customer query and

request all customers whose names start with “Mac.” Or you could perform a customer

query for all elements that contain “kitchen” as part of their full name.

Ranges for Names

Another alternative is to create a query that specifies a range of names for the list objects to

be returned. Using the NameRangeFilter, you can specify both the starting and ending

points of the range, only the start of the range, or only the end of the range. String values

for names are case-insensitive. In a sorted list, punctuation characters are first, followed by

numeric characters, and then alphabetical characters. Values progress from 0 to 9 and from

A to Z. If both FromName and ToName are specified, ToName must be lexicographically

higher than FromName. See the section “Limiting the Number of Objects Returned,”

beginning on page 76, for information on how to use the name range filter in conjunction

with MaxReturned.

“To” is specified Start period Example

Date only End of the day 10/1/02 means 10/1/02 23:59:59

Date and hour only Beginning of the hour 10/1/02 8 means 10/1/02 8:00:00

Date, hour, and

minute only

Beginning of the minute 10/1/02 8:20 means 10/1/02 8:20:00

Date, hour, minute,

and second

The second 10/1/02 8:20:40 means 10/1/02 8:20:40

84 Chapter 8: Creating Queries

(c) 2013 Intuit Inc. All rights reserved.

Special Information Contained in an AccountRet Object

This section provides information concering the AccountRet object, which is contained in

the response to an AccountQuery request.

Special Account Type

Most QuickBooks accounts are created in response to an explicit request by the small

business owner. “Special accounts” are accounts created automatically by QuickBooks for a

special purpose, usually as a side-effect of creating some other transaction. The

SpecialAccountType value is an enumerated type and is returned only if the queried

account is a special account. Examples of special account types are AccountsPayable,

AccountsReceivable, CostOfGoodsSold, SalesOrders, UncategorizedExpenses, and

UndepositedFunds.

If QuickBooks needs to create one of its special accounts and the name it uses for this

account type has already been used (because a manually created account was assigned the

same name), QuickBooks prepends an asterisk (*) to the account name (for example,

*UndepositedFunds).

Tax Line Information

The tax line information returned in the AccountRet response relates to the tax form the

user selected for the Company (for example, Form1120, Form1120S, Form1065). To

determine what tax form the tax lines relate to, you can query the Company object and

inspect the TaxForm field returned in the CompanyRet object.

The tax line information (TaxLineInfoRet) contains two elements:

• TaxLineID: an internal number used by QuickBooks to identify a particular line in the

specified tax form

• TaxLineName: a descriptive name of the line on the specified tax form

Note that if the user changes the specified tax form, or if the tax form changes from year to

year, the tax line information previously returned is no longer accurate.

Cash Flow Classification

If the user assigned a cash flow classification in QuickBooks, you can obtain the

classification for a given account from the AccountRet object. The user assigns this value to

an account in QuickBooks by selecting Preferences > Reports & Graphs > Company

Preferences > Classify Cash. The SDK defines the following enumerated values for the

CashFlowClassification element:

• Operating: corresponds to the Operating classification in QuickBooks

• Investing: corresponds to the Investing classification in QuickBooks

• Financing: corresponds to the Financing classification in QuickBooks

• NotApplicable: this account cannot be assigned a cash flow classification

List Queries: Commonly Used Filters 85

(c) 2013 Intuit Inc. All rights reserved.

• None: no cash flow classification has yet been assigned to this account

Special Filters

Some queries contain special filters useful in a particular context. These filters include the

following:

• Account type

• Total balance

• ToDo query

Account Type

The AccountType filter, contained in the AccountQueryRq, allows you to specify an

account type (Accounts Payable, Accounts Receivable, Bank, CreditCard, and so on) that

enables you to focus on data for a particular type of account.

Total Balance

Queries for customer and vendor entity lists allow you to specify a TotalBalance filter. This

filter allows you to specify an amount and an operator (LessThan, LessThanEqual, Equal,

GreaterThan, GreaterThanEqual). Only the customers or vendors with balances that meet

the specified criteria for this total balance will be returned. The returned objects are sorted

by TotalBalance, with items in ascending order (by TotalBalance) for the operators

LessThan, LessThanEqual, and Equal—for example:

LessThan 100:

-50

-10

+10

+70

+99

The items are in descending order (by TotalBalance) for the operators GreaterThan and

GreaterThanEqual—for example:

GreaterThan 1000:

50,000

10,000

5,000

2,000

ToDo Query

Queries for ToDo lists allow you to specify a DoneStatus filter for the elements to be

returned. You can specify NotDoneOnly (the default), DoneOnly, or All for this filter.

86 Chapter 8: Creating Queries

(c) 2013 Intuit Inc. All rights reserved.

Transaction Queries: Commonly Used Filters

Transaction queries generally support the following types of filters:

• TxnID or reference number

• Date filters

• Entity filters

• Account filters

• Reference number filters

You can also modify the data returned to you by including one or both of these elements:

• IncludeLinkedTxns

• IncludeLineItems

TxnID or Reference Number

Transaction queries allow you to specify a TxnID or a RefNumber, or to specify certain

criteria for transaction objects to be returned. Remember that TxnIDs, because they are

assigned by QuickBooks, are guaranteed to remain the same. Specifying TxnIDs is the

fastest way to obtain transactions with a query.

Date Filters

Because transactions are time-stamped, date filters are a useful query mechanism. You can

filter dates based on the following:

• When the object was created or modified (ModifiedDateRangeFilter). This filter uses a

timestamp assigned by QuickBooks.

• A date assigned to the transaction by the small business owner (TxnDateRangeFilter).

• A DateMacro (for example, ThisWeekToDate, ThisMonthToDate, LastWeek,

LastFiscalQuarter, LastFiscalYear).

Filtering by Modification Date

As with list queries, transaction queries can filter for transactions modified during a

specified range of dates. Using the ModifiedDateRangeFilter, you can specify “From” and

“To” modification dates, or simply a beginnning or ending cutoff for the modification date.

Dates are of type DATETIMETYPE, which specifies time in terms of year/month/day/

hours/minutes/seconds.

Transaction Queries: Commonly Used Filters 87

(c) 2013 Intuit Inc. All rights reserved.

Filtering by Transaction Date

Similarly, transaction queries can filter for transactions that have dates assigned during a

specified range of dates. You can specify “From” (FromTxnDate) and “To” (ToTxnDate)

dates, or simply a beginning or ending cutoff date. Dates are of type DATETYPE, which

specifies time in terms of year/month/day.

Filtering by QuickBooks Date Macro

The SDK queries also support the date macros commonly used in QuickBooks, such as

ThisWeekToDate, ThisFiscalQuarterToDate, LastMonth, and so on. Do not include

DateMacro if you are specifying a FromTxnDate or ToTxnDate.

Entity Filters

You will often use entity or name filters to specify names of customers, vendors,

employees, or other names associated with a transaction object. Entity filters are often used,

for example, to obtain invoices or payments for a specific customer or set of customers or

to query bills received from a specific vendor.

The entity filter allows you to specify a ListID, FullName, FullNameWithChildren, or

ListIDWithChildren. FullNameWithChildren and ListIDWithChildren include all objects

pertaining to the specified FullName or ListID as well as all the descendants of those

objects.

Listing 8-4 shows an example of an invoice query that includes both a date range filter and

an entity filter. This request asks QuickBooks to return all invoices pertaining to the Jones’s

kitchen that were modified between January 2 and January 5, 2002.

_______Listing 8-4 Transaction filter using date range and entity filters

<InvoiceQueryRq requestID = "73">

<ModifiedDateRangeFilter>

<FromModifiedDate>2002-01-02</FromModifiedDate>

<ToModifiedDate>2002-01-05</ToModifiedDate>

</ModifiedDateRangeFilter>

<EntityFilter>

<FullName>Jones:Kitchen</FullName>

</EntityFilter>

</InvoiceQueryRq>

Listing 8-5 shows an item inventory query that asks for all items with the word bolt in their

name. The filter is case-insensitive.

88 Chapter 8: Creating Queries

(c) 2013 Intuit Inc. All rights reserved.

______ Listing 8-5 ItemInventoryQueryRq using a match criterion for a name filter

<ItemInventoryQueryRq requestID = "795944”/>

<NameFilter>

<MatchCriterion>Contains</MatchCriterion>

<Name>bolt</Name>

</NameFilter>

</ItemInventoryQueryRq>

Account Filters

An account filter is another useful way to focus on transactions related to a particular

account or set of accounts. You can specify a ListID, FullName, ListIDWithChildren, or

FullNameWithChildren for the account.

Be sure you use an account in the account filter that is appropriate for the transaction you

are querying for. For example, an account filter for invoices must be an Accounts

Receivable type account or no transactions can be returned. (A common mistake is to

expect transactions to be returned in a query for the accounts affected by item or expense

lines.)

The account filter only operates properly on the main account associated with a transaction.

For example, the main accounts for invoices are A/R accounts, bills are associated with A/P

accounts, and so on. Suppose you have an invoice for the A/R account “My AR Account”

that includes a line item, and the funds from that item are accounted for in an income

account called “Sales.” Using “Sales” in the account filter will not return that invoice—in

fact, it won’t return any invoices because “Sales” is not an A/R account. If you use the

account “My AR Account” in the account filter, the invoice would be returned (assuming

the rest of the filters included the invoice in the return list).

Listing 8-6 asks QuickBooks to return all invoices for the

AccountsReceivable:SportingGoods account that were created during the last month.

______ Listing 8-6 Query request using date range and account filters

<InvoiceQueryRq requestID = "73">

<TxnDateRangeFilter>

<DateMacro>LastMonth</DateMacro>

</TxnDateRangeFilter>

<AccountFilter>

<FullName>AccountsReceivable:SportingGoods</FullName>

</AccountFilter>

</InvoiceQueryRq>

Listing 8-7 uses date range and entity filters to request all bills from its landlord, New

World Real Estate, for rent in all of its San Jose offices from January 01, 2003, through

March 31, 2003.

Transaction Queries: Commonly Used Filters 89

(c) 2013 Intuit Inc. All rights reserved.

_______Listing 8-7 Query request using modified date range and entity filters

<BillQueryRq requestID = "81">

<ModifiedDateRangeFilter>

<FromModifiedDate>2003-01-01</FromModifiedDate>

<ToModifiedDate>2003-03-31</ToModifiedDate>

</ModifiedDateRangeFilter>

<EntityFilter>

<FullNameWithChildren>NewWorldRealEstate:rent:SanJoseOffices

</FullNameWithChildren>

</EntityFilter>

</BillQueryRq>

Reference Number Filters

You can filter for transactions by supplying specific reference numbers or by specifying a

range of reference numbers. If you are interested only in a few invoices, you can filter by

reference number. Such focused queries are particularly useful in the testing and

development phases, where you will probably want to run repeated controlled tests on the

same object or set of objects.

Match Criterion for Reference Numbers

The RefNumberFilter allows you to obtain transactions that match a specified criterion. The

match criterion can be StartsWith, Contains, or EndsWith.

Ranges for Reference Numbers

Another alternative is to specify a range of reference numbers using the

RefNumberRangeFilter and specifying the “From” and “To” reference numbers. You can

specify the starting and ending points of the range, or only the starting or ending point of

the range.

What If a Transaction Has No Reference Number?

Some transactions do not have a reference number. These transactions are ignored by

queries that use RefNumber or RefNumberFilter. When a RefNumberRangeFilter is

used and both “From” and “To” fields are specified, these transactions are also ignored.

However, if the RefNumberRangeFilter is used with only the “From” field or the “To”

field specified, QuickBooks returns the transactions that have no reference numbers.

Using RefNumberCaseSensitive Instead of RefNumber

Prior to QuickBooks 2006, if the reference number contained letters, not just numeric

digits, RefNumber could be very slow. The RefNumberCaseSensitive tag was provided for

this case to improve performance. However, starting with QuickBooks 2006, RefNumber

and RefNumberCaseSensitive provide the same good performance. The

RefNumberCaseSensitive tag can be used if case sensitivity is desired, however.

90 Chapter 8: Creating Queries

(c) 2013 Intuit Inc. All rights reserved.

Paid Status

The PaidStatus filter searches for invoices or bills on the basis of whether their balances are

paid or not. If you specify PaidOnly for this filter, QuickBooks returns only those bills or

invoices that are completely paid (that is, closed). If you specify NotPaidOnly, QuickBooks

returns those bills or invoices that have a non-zero balance. (You will probably not bother

specifying All for this filter, since that is the equivalent of not specifying the filter.)

Requesting Additional Data

The following elements allow you to request that additional data be returned by a given

query:

• IncludeLinkedTxns

• IncludeLineItems

A linked transaction is a transaction that is associated with the original transaction in some

way. For example, a credit memo could be linked to a customer invoice, thereby adding

credit to a customer’s account. A line item is a line that adds detail to a transaction object

such as an invoice or a bill. A transaction object can be composed of multiple line items.

By default, these flags are False: queries that lack these tags will not return any line items

or linked transactions. If you are interested in this additional information, specify True.

Special Queries

A number of special queries assist you with common tasks:

• PreferencesQuery - allows you to check whether certain operations will be permitted

before you attempt to perform them. This way, you can anticipate errors that would be

returned by QuickBooks and take appropriate action ead of time.

• HostQuery - returns information about the QuickBooks product and version as well as

the versions of the qbXML specification.

• CompanyQuery - returns basic information about a QuickBooks company file

• CompanyActivityQuery - This query allows you to determine the date when the

company file was last restored. If you receive Status Code 3240 (Time creation

mismatch), you will need to identify the most up-to-date copy of the company file.

• BillToPayQuery - returns the transaction ID for all open bills and credits.

• ReceivePaymentToDepositQuery - returns the transaction IDs for all customer

payments that need to be deposited.

The Generic TransactionQuery

Special Queries 91

(c) 2013 Intuit Inc. All rights reserved.

TransactionQuery is a generic transaction query that provides functionality (e.g. filters)

similar to the Advanced Find window in the QuickBooks UI. It allows you to search for

transactions across different transaction types. In contrast to the other transaction-specific

queries, the TransactionQuery only returns data common to all transactions, such as TxnID,

type, dates, accountRef, and so on.

Accordingly, if additional and more transaction-specific data is required, a subsequent call

to the desired query can be used to get that transaction-specific data. For example, the

TransactionQuery can be used to present all transactions in a certain date range, then the

user can select a particular transaction, say an invoice transaction. In response to this

choice, you could do an InvoiceQuery to pull up all of the invoice data, similar to

QuickZoom in the QuickBooks UI.

IMPORTANT

TimeTracking transactions are not supported in the generic
TransactionQuery. (This mirrors the QuickBooks UI where
TimeTracking transactions aren’t available in the Find
functionality.)

TransactionQuery and Access Permissions

QuickBooks access permissions are obeyed in this query. The behavior varies depending on

how you use (or don’t use) the transaction type filter. If you set the transaction type filter to

"All" (or if you don't set it at all), the query searches only those transaction types that are

permissible types for the user currently logged in. If instead of "all," you specify a

transaction type that the currently logged in user is not permitted to access, you get a

runtime error, even if other permissible transaction types were specified as well.

Finally, the transaction type filter is subject to sensitive data access level restrictions and

payroll subscription status.

Filters for TransactionQuery

The TransactionQuery has filters similar to those available for reports, although the filter

names are special toTransactionQuery, including:

• TransactionFilter, where you can specify one or more specific transaction types or “All”

types if you wish.

• TransactionDetailLevelFilter, where you can specify the detail level of the query

results: all results, summary only (the default), or all except summary. (Summary only

refers to the transaction as a whole, whereas all except summary refers to the

transaction lines.)

• TransactionPostingStatusFilter, where you can specify transactions based on posting

status. Valid values are posting, non-posting, or either (the default). (Posting status

refers to whether QuickBooks records a transaction in one of your account registers.)

92 Chapter 8: Creating Queries

(c) 2013 Intuit Inc. All rights reserved.

TransactionPaidStatusFilter, where you can search for "open" transactions, i.e. transactions

with a remaining balance (for example, credits not fully applied or invoices not fully paid).

Valid values are closed, open, or either (the default).

Before You Begin 93

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 9 1

GENERATING REPORTS 1

Reports provide the QuickBooks user with multiple views of data over a specified time

period. They can span multiple data types and can be customized in a wide variety of ways.

The QuickBooks SDK supports most of the report types and customizations and a number

of the filters currently found in QuickBooks. The SDK also supports the Custom Summary

and Custom Transaction Detail reports, which can be used when no preset report type exists

to fill a given need.

Before You Begin

Before you begin working with reports in the SDK, you need a thorough understanding of

reports in QuickBooks. Specifically, you should be knowledgeable about the following:

• What preset reports are available in QuickBooks (both summary and detail reports)

• The purpose of these reports

• What features in the preset reports can be customized

The QuickBooks Report Finder is a useful tool that shows samples of all preset reports. It

allows you to explore the different report types and discover exactly which parameters can

be easily modified.

Categories of Reports

For efficiency and convenience, the SDK groups QuickBooks reports into a number of

logical categories. Each category has a corresponding request and response message, as

shown in Table 9-1.

Table 9-1 Categories of Reports in the SDK

Category Request Name Response Name

Aging AgingReportQueryRq AgingReportQueryRs

BudgetSummary BudgetSummaryReportQueryRq BudgetSummaryReportQueryRs

Custom Detail CustomDetailReportQueryRq CustomDetailReportQueryRs

Custom Summary CustomSummaryReportQueryRq CustomSummaryReportQueryRs

General Detail GeneralDetailReportQueryRq GeneralDetailReportQueryRs

General Summary GeneralSummaryReportQueryRq GeneralSummaryReportQueryRs

Job JobReportQueryRq Job ReportQueryRs

PayrollDetail PayrollDetailReportQueryRq PayrollDetailReportQueryRs

94 Chapter 9: Generating Reports

(c) 2013 Intuit Inc. All rights reserved.

All reports in a given category have similar customizable data. (The reports themselves,

however, may differ widely from each other.)

Tables 4-2 through 4-9 list the reports in each category.

General Summary Reports

The General Summary Reports category is the largest category for summary reports. In

addition to common customizations, the reports within this category can be customized by

the number of columns that are returned and by period comparisons for the data in the

report.

Table 9-2 General Summary Reports

PayrollSummary PayrollSummaryReportQueryRq PayrollSummaryReportQueryRs

Time TimeReportQueryRq TimeReportQueryRs

Balance Sheet Previous Year Comparison

Balance Sheet Standard

Balance Sheet Summary

Customer Balance Summary

Expense by Vendor Summary

Income by Customer Summary

Income Tax Summary

Inventory Stock Status by Item

Inventory Stock Status by Vendor

Inventory Valuation Summary

Physical Inventory Worksheet

Profit and Loss by Class

Profit and Loss by Job

Profit and Loss Previous Year Comparison

Profit and Loss Standard

Profit and Loss YTD Comparison

Purchase by Item Summary

Purchase by Vendor Summary

Sales by Customer Summary

Sales by Item Summary

Sales by Rep Summary

Sales Tax Liability

Sales Tax Revenue Summary

Trial Balance

Vendor Balance Summary

Category Request Name Response Name

Categories of Reports 95

(c) 2013 Intuit Inc. All rights reserved.

Job Reports

The Job Reports category includes both summary and transaction detail reports. They can

be customized only by date range, by column summarization, and by common filters. Some

job reports require a customer:job reference in order to work.

Table 9-3 Job Reports

Time Reports

The Time Reports category includes summary and detail reports related by time.

Summarized columns can be customized in these reports.

Table 9-4 Time Reports

Aging Reports

The Aging Reports category includes summary and detail reports related to aging criteria.

Table 9-5 Aging Reports

Item Estimates vs. Actual

Item Profitability

Job Estimates vs. Actuals Details

Job Estimates vs. Actuals Summary

Job Profitability Detail

Job Profitability Summary

Time by Item

Time by Job Detail

Time by Job Summary

Time by Name

AP Aging Detail

AP Aging Summary

AR Aging Detail

AR Aging Summary

Collections Report

96 Chapter 9: Generating Reports

(c) 2013 Intuit Inc. All rights reserved.

Budget Summary Reports

The Budget Summary Reports category consists of all summary budget reports.

Table 9-6 Budget Summary Reports

General Detail Reports

The General Detail Reports category consists exclusively of transaction detail reports.

Table 9-7 General Detail Reports

Balance Sheet Budget Overview

Balance Sheet Budget vs. Actual

Profit and Loss Budget Overview

Profit and Loss Budget vs. Actual

Profit and Loss Budget Performance

1099 Detail

Audit Trail

Balance Sheet Detail

Check Detail

Customer Balance Detail

Deposit Detail

Estimates by Job

Expense by Vendor Detail

General Ledger

Income by Customer Detail

Income Tax Detail

Inventory Valuation Detail

Job Progress Invoices vs. Estimates

Journal

Missing Checks

Open Invoices

Open POs

Open POs by Job

Open Sales Order By Customer

Open Sales Order By Items

Pending Sales

Profit and Loss Detail

Purchase by Item Detail

Categories of Reports 97

(c) 2013 Intuit Inc. All rights reserved.

Payroll Summary Reports

Payroll Summary Reports can be generated if your application is accessing a company file

that is currently signed up for a subscription to a payroll service. (If your application is not

signed up, it will receive an error when it attempts to generate a report in this category.)

The restrictions noted above about payroll reports requiring the use of the Intuit Payroll

service do not apply to the QuickBooks sample companies. You can still test out these

reports on the sample companies without subscribing to the payroll service. For all other

companies, however, the company must be subscribed.

Table 9-8 Payroll Summary Reports

Payroll Detail Reports

Payroll Detail Reports can be generated if your application is accessing a company file that

is currently signed up for a subscription to a payroll service. (If your application is not

signed up, it will receive an error when it attempts to generate a report in this category.)

The restrictions noted above about payroll reports requiring the use of the Intuit Payroll

service do not apply to the QuickBooks sample companies. You can still test out these

reports on the sample companies without subscribing to the payroll service. For all other

companies, however, the company must be subscribed.

Purchase by Vendor Detail

Sales by Customer Detail

Sales by Item Detail

Sales by Rep Detail

Transaction Detail by Account

Transaction List by Customer

Transaction List by Date

Transaction List by Vendor

Unbilled Costs by Job

Unpaid Bills Detail

Vendor Balance Detail

Employee Earnings Summary

Payroll Liability Balances

Payroll Summary

98 Chapter 9: Generating Reports

(c) 2013 Intuit Inc. All rights reserved.

Table 9-9 Payroll Detail Reports

Custom Summary and Detail Reports

If you want complete control over the report content, you will be interested in both the

Custom Summary Report and the Custom Transaction Detail Report. Custom reports do not

make any assumptions about the data you are interested in—they require you to specify

exactly what data you want included in the report. Your application has to select the row

and column axes, and it controls the output using common customization parameters for

dates and filters. For the Custom Transaction Detail Report, you must specify all the

include columns for the transactions you want returned in the report. For these reports, you

are also required to specify a date element (a DateMacro or a custom date range).

Default Reports

A default report is generated when the application issues a request that contains only the

type of the report. For example, the following report request would generate a default AP

Aging Summary report:

<QBXML>

<QBXMLMsgsRq>

<AgingReportQueryRq>

<AgingReportType>APAgingSummary</AgingReportType>

</AgingReportQueryRq>

</QBXMLMsgsRq>

</QBXML>

A default report generated by the SDK uses the same default parameters as are used in the

QuickBooks user interface.

NOTE

Different editions of QuickBooks (for example, the Accountant
edition, the Contractor edition) may produce slightly different
versions of a given report. For example, in a standard Profit
and Loss report, the Accountant edition replaces the Amount
column with two columns: Credit and Debit. If such

Employee State Taxes Detail

Payroll Item Detail

Payroll Review Detail

Payroll Transaction Detail

Payroll Transactions by Payee

A Practical Approach 99

(c) 2013 Intuit Inc. All rights reserved.

differences are a concern, you may want to test the different
QuickBooks editions for a given report so that your application
can handle them appropriately. To isolate your program from
this uncertainty, always specify the columns that are needed
by your application using the IncludeColumn element.

A Practical Approach

Because the SDK produces the same reports and offers similar customizations as the

QuickBooks user interface, the following practical approach is suggested for creating a

report request using the SDK:

1. In the QuickBooks user interface, select the QuickBooks report that presents the basic

type of data you need (for example, Purchase by Vendor Summary).

2. Also in the QuickBooks user interface, modify the report, if necessary. For example,

you might want to display columns by quarter, and you might want to add subcolumns

for the previous period.

3. In the QuickBooks user interface, generate the report and see if you’re satisfied. If not,

continue modifying the report until you have the desired results.

4. Make a list of the modifications you made to the preset report (fields and values).

5. Determine which fields in the SDK request for this report type correspond to each of

the user interface features that you used to modify the report. (In our example, we

would look at the fields for the request GeneralSummaryReportQueryRq, since the

Purchase by Vendor Summary report is in the General Summary Report category.)

6. Construct the request in the SDK using either the qbXML Request Processor API or the

QBFC API.

The request will specify the standard report name, as well as the fields and values for each

of the modifications you want to make. The following section presents an example of how

the user interface features in QuickBooks correspond to the fields in an SDK report request.

Creating a Report Request

This section uses a common report, Profit and Loss Standard, as an example that shows the

correspondence between user interface features in QuickBooks and fields in an SDK report

request. First, it presents a general summary of how the SDK translates user interface

features into name/value pairs. Subsequent sections provide further detail on how the SDK

implements specific customizable features.

Modifying a Profit and Loss Standard Report

This section shows how the QuickBooks user interface fields correspond to SDK fields

used in request messages by qbXML and QBFC. As an example, it uses the Profit and Loss

Standard Report. In the SDK, this report belongs to the GeneralSummaryReport category.

In qbXML, the request begins:

100 Chapter 9: Generating Reports

(c) 2013 Intuit Inc. All rights reserved.

<GeneralSummaryReportQueryRq requestID=”4235”>

<GeneralSummaryReportType>ProfitAndLossStandard

</GeneralSummaryReportType>

.

.

.

</GeneralSummaryReportQueryRq>

The General Summary report request contains the following fields, which correspond to

features on the QuickBooks Modify Report screen for the Profit and Loss report (see Figure

9-1):

• ReportDateMacro or ReportPeriod - for setting the Report Date Range

• SummarizeColumnsBy - specifies how data is organized in the report

• IncludeSubcolumns - specifies whether or not you want the extra subcolumns

included in your report

• ReportCalendar - specifies whether you want the report for the fiscal, calendar, or

income tax year. In QuickBooks, this choice appears when the user presses the

Advanced button.

• ReturnRows - specifies whether you want the report to include only rows with active

information, all rows, or only rows with nonzero values. In QuickBooks, this choice

appears when the user presses the Advanced button.

• ReturnColumns - specifies whether you want the report to include only columns with

active information, all columns, or only columns with nonzero values. In QuickBooks,

this choice appears when the user presses the Advanced button.

• ReportBasis - specifies whether to use accrual or cash basis for the report. (A value of

“None” is used only for reports that do not allow a report basis setting; see Table 9-18.)

Date Range

The SDK parallels the QuickBooks user interface and allows you to choose whether you

want the report to cover a date range explicitly specified by you in the FromReportDate and

ToReportDate fields, or whether you want to choose one of the standard report date ranges

using the ReportDateMacro. Enumerated values for the ReportDateMacro field correspond

directly to those in the user interface drop-down list—for example, Today, ThisWeek,

ThisWeekToDate, and so on.

“SummarizeColumnsBy” Field

The SummarizeColumnsBy field specifies how the data is organized in the report and is a

common modification to many reports. The enumerated values available in the SDK for

this field parallel those of the QuickBooks user interface and are time-based, entity-based,

item-based, and so on (for example: Day, Month, Year; Employee, Customer, Vendor; and

PayrollItemDetail, ItemDetail, ItemType). In the example in “A Practical Approach” (page

99), you would set SummarizeColumnsBy equal to “Quarter.”

Creating a Report Request 101

(c) 2013 Intuit Inc. All rights reserved.

“SummarizeRowsBy” Field

The SummarizeRowsBy field is used in the General Detail, Custom Detail, Custom

Summary, and Payroll Detail reports. It is an optional element in the General Detail and

Payroll Detail reports. Each transaction detail report has a default value for

SummarizeRowsBy, and this is usually the value you will use. For custom reports, you

must specify this field. This field determines the way QuickBooks will sumarize the

transaction data in the report.

Note that it is possible to select a combination of values for the SummarizeRowsBy and

SummarizeColumnsBy fields that are valid but that do not make sense for a given report

type. For example, specifying “Account” for SummarizeColumnsBy and

“IncomeStatement” for SummarizeRowsBy does not generate a programmatic warning, but

the returned report is invalid.

“IncludeSubcolumns” Field

The IncludeSubcolumns field is a Boolean value. In general, False specifies not to include

any subcolumn information. True specifies to include certain default subcolumns that have

been defined for a given report type. You do not have to use all of the returned subcolumn

information even if you ask for it. You can process only the data you’re interested in.

The following sections provide details on exactly which subcolumn information is returned

for specific types of reports when you specify True for this field.

In the example in “A Practical Approach” (page 99), you would set IncludeSubcolumns to

True because you want to add subcolumns for the previous period. When you process the

response, you would simply discard the subcolumn information you weren’t interested in.

Subcolumns that are available in the user interface but unavailable in the SDK, such as $

Change and % Change, can be calculated using values from returned data elements.

102 Chapter 9: Generating Reports

(c) 2013 Intuit Inc. All rights reserved.

Figure 9-1 SDK field names for a General Summary report request

Default Values for Time and Job Reports (IncludeSubcolumns)

By default, all subcolumns are returned for Time and Job reports. If you specify False for

IncludeSubcolumns, one subcolumn—Average Cost—will always be returned (otherwise

the report would contain no data).

Default Values for Summary Reports (IncludeSubcolumns)

For Summary reports, specifying True for IncludeSubcolumns will cause the following

default values to be turned on (with certain qualifications described in the next section):

• Previous Period

• Previous Year

• % of Row

• % of Column

Creating a Report Request 103

(c) 2013 Intuit Inc. All rights reserved.

Previous Period/ Previous Year (IncludeSubcolumns)

If you specify True for IncludeSubcolumns, the PreviousPeriod and PreviousYear

subcolumns will be turned on for reports that have this information, provided that

ReportDateMacro is not set to ALL or FromDate is provided.

Special Case: Sales By ItemSummary Report

The SalesByItemSummary report has eight subcolumns that are included by default: Qty,

Amount, % of Sales, Avg. Price, Average Cost, COGS, Gross Margin, Gross Margin %. If

you specify False, four columns are turned off and these columns remain: Qty, Amount, %

of Sales, Avg. Price.

Report Basis

Certain reports support ReportBasis, as shown in Table 9-18. If you specify ReportBasis for

a report type that does not support it, an error is returned.

For requests that support ReportBasis, you can specify Cash, Accrual, or None. The value

“None” in a report request is equivalent to omitting the ReportBasis field: it means “do not

change this value; use the default setting.” This default setting can be either the setting used

in the report Preferences or it can be the QuickBooks default setting for a given type of

report. (In general, do not specify a ReportBasis unless you have a specific need to specify

either Cash or Accrual.) QuickBooks follows the setting from Preferences > Reports and

Graphs.

In the report response, the SDK returns “None” as the value for the ReportBasis field for

reports that do not support this field.

Setting Up Filters for a Profit and Loss Standard Report

The General Summary report request contains the ReportAccountFilter field, which

corresponds to the Filter drop-down list in the QuickBooks Filters screen for the Profit and

Loss report (see Figure 9-2). The SDK allows you to include the following types of filters:

• ReportAccountFilter - allows you to report on a specific account type or grouping of

account types (for example, accounts payable, accounts receivable, liability) or an ID

or FullName

• ReportClassFilter - Allows you to report on a particular class of transactions you have

defined

• ReportDetailLevelFilter - allows you to limit the amount of detail returned in a given

report

• ReportEntityFilter - allows you to report on a specified name type (for example,

customer, employee, vendor, or other) or an ID or FullName

• ReportItemFilter - allows you to report on a specified item (for example, discount,

inventory, non-inventory) or an ID or FullName

• ReportModifiedDateRangeFilter or ReportModifiedDateRangeMacro - allow you

to report on transactions created or modified in a given time frame

104 Chapter 9: Generating Reports

(c) 2013 Intuit Inc. All rights reserved.

• ReportPostingStatusFilter - allows you to report on only posting transactions or only

nonposting transactions (for transactions with posting status)

• ReportTxnTypeFilter - allows you to report on one or more specific transaction types

(for example, check, deposit, estimate)

Report filters are very similar, though not identical, to filters that are used in queries. For

reports that require either a customer job reference or an account reference, the reference is

specified using the appropriate filter.

Figure 9-2 SDK fields for modifying report filters

“IncludeColumn” Field

The IncludeColumn field is used in Aging, Custom Detail, PayrollDetail, and General

Detail reports. If you specify a value for this field, the original checked items that appear in

the QuickBooks user interface are cleared; if you want those values too, you’ll need to

specify them explicitly. Some choices available in the QuickBooks user interface for the

Creating a Report Request 105

(c) 2013 Intuit Inc. All rights reserved.

Columns scrollable listbox for a given report type are not available in the SDK. Table 9-19

lists the column types and their corresponding data types. It also indicates whether the

column type can be used in the IncludeColumn field.

A convenient way to obtain a number of transaction IDs is to include TxnID in the

IncludeColumn field of a report. (The PurchaseOrder Modify sample program included in

the SDK provides an example of this technique.) This method is often more convenient

than performing queries to obtain the TxnIDs.

Required Filter for Certain Job Reports

For the JobEstimatesVsActualsDetail report and the JobProfitabilityDetail report, you must

provide a ReportEntity filter that specifies a customer reference.

Required Filter for Missing Checks Report

For the MissingChecks report (a General Detail report), you must provide an Account filter

that specifies an account reference.

Example of a Report Request

Here is a sample report request for a Purchase by Vendor Summary report, for the period

This Month to Date. Columns are labeled by quarter. Subcolumn information is requested

(for this report, subcolumn information includes Previous Period, Previous Year, and Year-

To-Date). Only rows and columns with active information will be included in the response.

<GeneralSummaryReportQueryRq requestID = "928">

<GeneralSummaryReportType>PurchaseByVendorSummary

</GeneralSummaryReportType>

<ReportDateMacro>ThisMonthToDate</ReportDateMacro>

<SummarizeColumnsBy>Quarter</SummarizeColumnsBy>

<IncludeSubcolumns>true</IncludeSubcolumns>

<ReturnRows>ActiveOnly</ReturnRows>

<ReturnColumns>ActiveOnly</ReturnColumns>

</GeneralSummaryReportQueryRq>

Creating Requests for Budget Reports

Before you can obtain a Budget report, the “target” budget must be defined in QuickBooks.

The type of this budget determines the valid combinations of rows and columns you can

specify in a Budget report request. Budget reports fall into two general categories: Balance

Sheet and Profit and Loss. In addition, each of these categories has both an overview and an

actual projection of the budget. When you request a Budget report, you specify data

associated with the budget itself, and then you specify the rows and columns for the report.

There are three pieces of data you specify regarding the budget:

106 Chapter 9: Generating Reports

(c) 2013 Intuit Inc. All rights reserved.

• BudgetSummary Report type

• Fiscal year

• Budget criterion

Report Types

The following Budget Summary report types are supported:

• BalanceSheetBudgetOverview

• BalanceSheetBudgetVsActual

• ProfitAndLossBudgetOverview

• ProfitAndLossBudgetVsActual

• ProfitAndLossBudgetPerformance

Fiscal Year

The fiscal year identifies the budget for the report.

Budget Criterion

The BudgetCriterion you specify depends on the type of report you’re requesting and on

the information that is defined in the target budget. If you select a Balance Sheet report, you

must always specify “Accounts” for the BudgetCriterion. If you select one of the Profit and

Loss report types, you an specify any of the values for BudgetCriterion, as long as your

budget defines them for the appropriate year. The types are

• Accounts

• AccountsAndClasses

• AccountsAndCustomers

Specifying Rows and Columns for the Budget Report

If the BudgetCriterion is set to “Accounts,” the only valid settings are

This rule applies to both BalanceSheetBudgetOverview and BalanceSheetBudgetVsActual.

If BudgetCriterion is set to “AccountsAndClasses,” the valid row/column combinations are

Row Column

Account Date

Row Column

Account Class

Account Date

Class Date

Interpreting the Report Response 107

(c) 2013 Intuit Inc. All rights reserved.

If BudgetCriterion is set to “AccountsAndCustomers,” the valid row/column combinations

are

Interpreting the Report Response

The report response contains two main types of information:

• Meta-data that describes the report as a whole, including its title, number of rows and

columns, and column titles

• Report data, which is presented as sequential rows of data with accompanying

descriptive information

Report Meta-data

The first part of the report response contains information that pertains to the report as a

whole:

• Report Title and Subtitle (see Figure 9-3)

• Report Basis (that is, Cash, Accrual, None). “None” indicates that the cash/accrual

distinction does not apply to this type of report (for example, the 1099 report has its

own basis for generation).

• Number of rows in the report

• Number of columns in the report

• Number of rows in the column title

• For each column in the report, a column descriptor that includes the ID, title, column

type and data type.

Column Descriptor

The column ID is the column number. Columns are numbered from the left, starting with 1.

Depending on the report, column titles may require one row or multiple rows. The

NumColTitleRows element is an integer used to describe how many rows to allocate for

column titles in a given report. Although this number is usually 1, with some reports it is 2

or 3. (For an example of column titles that span multiple rows, look at a

ProfitAndLossByJob report. With the default settings, this report has 2 rows per column

title. If you add subcolumns, it has 3 rows per column title.)

Row Column

Account Customer

Account Date

Customer Date

108 Chapter 9: Generating Reports

(c) 2013 Intuit Inc. All rights reserved.

Examples of column types are Account, Amount, PaymentMethod, Percent, ClearedStatus,

ShipToAddr1, and so on. Types are formatted qbXML types. A value of type Percent, for

example, would have two digits after the decimal point: 7.90. A value of type Duration that

is shown in QuickBooks as “hr:min” (for example “8:20”) would be returned in qbXML as

“PT8H20M.” (See also Table 9-19.)

Figure 9-3 SDK field names for a report response

The column descriptor also includes the dataType of the values in the column. This

information is more reliable than the column type in determining how the data is formatted.

The dataType value may be overridden on a cell-by-cell basis but usually is not. Table 9-19

contains a complete list of all the possible values for ColType, what the corresponding

DataType is, and whether the column can be used in the “IncludeColumn” field.

Interpreting the Report Response 109

(c) 2013 Intuit Inc. All rights reserved.

Report Data

The report data consists of rows of data, expressed in name/value pairs. A row is one of the

following types, as shown in Figure 9-3:

• Text row - contains only text and is used mainly for headings.

• Data row - contains the report data.

• Subtotal row - contains a calculated subtotal.

• Total row - contains a calculated total for the entire report. There will be only one Total

row.

A text row contains one field, RowData, which contains the row type and the row value.

The other types of rows contain two fields: RowData (a row type and a row value) and

ColData (column ID and column value).The column ID refers to the column ID defined in

the column descriptor meta-data.

Sometimes, the datatype within a given column differs from the overall column type

specified in the column descriptor. In such exception cases, the datatype of the particular

column is also listed with the ColData. In the following excerpt, for example, the datatype

in the column descriptor is AMTTYPE, but the datatype for column 9 is QUANTYPE.

<ColDesc colID="9" dataType="AMTTYPE">

<ColTitle titleRow="1" value="Sales Price" />

<ColType>UnitPrice</ColType>

</ColDesc>

<ColData colID="9" value="57.75111" dataType="QUANTYPE" />

Example

The following qbXML excerpt shows the beginning of the response for a standard Profit

and Loss report (as shown in Figure 9-3).

<QBXMLMsgsRs>

 <GeneralSummaryReportQueryRs

requestID="862" statusCode="0"

statusSeverity="Info" statusMessage="Status OK">

 <ReportRet>

 <ReportTitle>Profit & Loss</ReportTitle>

 <ReportBasis>Accrual</ReportBasis>

 <NumRows>55</NumRows>

 <NumColumns>2</NumColumns>

<NumColTitleRows>1</NumColTitleRows>

<ColDesc colID="1" dataType="STRTYPE">

 <ColTitle titleRow="1" />

 <ColType>Label</ColType>

 </ColDesc>

 <ColDesc colID="2" dataType="AMTTYPE">

110 Chapter 9: Generating Reports

(c) 2013 Intuit Inc. All rights reserved.

 <ColTitle titleRow="1" value="Dec 1 - 15, 03" />

 <ColType>Amount</ColType>

 </ColDesc>

<ReportData>

 <TextRow rowNumber="1">

 <RowData rowType="label" value="Ordinary Income/Expense"/>

 </TextRow>

 <TextRow rowNumber="2">

 <RowData rowType="label" value="Income" />

 </TextRow>

 <DataRow rowNumber="3">

 <RowData rowType="account" value="Construction" />

 <ColData colID="1" value="Construction" />

 </DataRow>

 <DataRow rowNumber="4">

 <RowData rowType="account" value="Construction:Labor" />

 <ColData colID="1" value="Labor" />

 <ColData colID="2" value="12226.00" />

 </DataRow>

<DataRow rowNumber="5">

 <RowData rowType="account"

value="Construction:Materials"/>

 <ColData colID="1" value="Materials" />

 <ColData colID="2" value="27346.60" />

 </DataRow>

 <DataRow rowNumber="6">

 <RowData rowType="account"

value="Construction:Miscellaneous"/>

 <ColData colID="1" value="Miscellaneous" />

 <ColData colID="2" value="2232.03" />

 </DataRow>

 <DataRow rowNumber="7">

<RowData rowType="account"

value="Construction:Subcontractors"/>

<ColData colID="1" value="Subcontractors" />

<ColData colID="2" value="16305.76" />

.

.

.

</ReportRet>

</GeneralSummaryReportQueryRs>

</QBXMLMsgsRs>

Enumerated Values for “ClearedStatus” Column

Some columns, for example the “Clr” column in a transaction detail report, use symbols to

indicate whether an item has cleared or not. The following enumerated values are used in

the SDK in place of the symbols that appear in the QuickBooks user interface:

Interpreting the Report Response 111

(c) 2013 Intuit Inc. All rights reserved.

Table 9-10 Enumerated values used in a “ClearedStatus” column

Transaction Detail Reports

In a transaction detail report, each column has a different label—for example, TxnNumber,

PONumber, DeliveryDate, Quantity, SalesPrice, Clear. The following qbXML example

shows the beginning of an A/P Aging Detail report. For purposes of comparison, the

corresponding part of the report, as it appears in QuickBooks, is also shown in Figure 9-4.

<QBXMLMsgsRs>

<AgingReportQueryRs statusCode="0" statusSeverity="Info"

statusMessage="Status OK">

<ReportRet>

<ReportTitle>A/P Aging Detail</ReportTitle>

<ReportSubtitle>As of December 15, 2003</ReportSubtitle>

<ReportBasis>Accrual</ReportBasis>

<NumRows>35</NumRows>

<NumColumns>8</NumColumns>

<NumColTitleRows>1</NumColTitleRows>

<ColDesc colID="1" dataType="STRTYPE">

<ColTitle titleRow="1" />

<ColType>Blank</ColType>

</ColDesc>

<ColDesc colID="2" dataType="STRTYPE">

<ColTitle titleRow="1" value="Type" />

<ColType>TxnType</ColType>

</ColDesc>

<ColDesc colID="3" dataType="DATETYPE">

<ColTitle titleRow="1" value="Date" />

<ColType>Date</ColType>

</ColDesc>

<ColDesc colID="4" dataType="STRTYPE">

<ColTitle titleRow="1" value="Num" />

<ColType>RefNumber</ColType>

</ColDesc>

<ColDesc colID="5" dataType="STRTYPE">

<ColTitle titleRow="1" value="Name" />

<ColType>Name</ColType>

</ColDesc>

<ColDesc colID="6" dataType="DATETYPE">

<ColTitle titleRow="1" value="Due Date" />

<ColType>DueDate</ColType>

</ColDesc>

<ColDesc colID="7" dataType="INTTYPE">

<ColTitle titleRow="1" value="Aging" />

Symbol Enumerated Value

* (asterisk) Pending

(checkmark) Cleared

(lightning bolt) Not cleared

112 Chapter 9: Generating Reports

(c) 2013 Intuit Inc. All rights reserved.

<ColType>Aging</ColType>

</ColDesc>

<ColDesc colID="8" dataType="AMTTYPE">

<ColTitle titleRow="1" value="Open Balance" />

<ColType>OpenBalance</ColType>

</ColDesc>

<ReportData>

<TextRow rowNumber="1" value="Current" />

<DataRow rowNumber="2">

<ColData colID="2" value="Bill" />

<ColData colID="3" value="2003-12-05" />

<ColData colID="5" value="Hopkins Construction Rentals" />

<ColData colID="6" value="2003-12-20" />

<ColData colID="8" value="550.00" />

</DataRow>

<DataRow rowNumber="3">

<ColData colID="2" value="Bill" />

<ColData colID="3" value="2003-12-08" />

<ColData colID="5" value="Hopkins Construction Rentals" />

<ColData colID="6" value="2003-12-23" />

<ColData colID="8" value="150.00" />

</DataRow>

<DataRow rowNumber="4">

<ColData colID="2" value="Bill" />

<ColData colID="3" value="2003-11-24" />

<ColData colID="5" value="Middlefield Drywall" />

<ColData colID="6" value="2003-12-24" />

<ColData colID="8" value="1200.00" />

</DataRow>

<DataRow rowNumber="5">

<ColData colID="2" value="Bill" />

<ColData colID="3" value="2003-12-11" />

<ColData colID="5" value="Lew Plumbing" />

<ColData colID="6" value="2003-12-26" />

<ColData colID="8" value="1200.00" />

</DataRow>

...

</ReportData>

</ReportRet>

</AgingReportQueryRs>

</QBXMLMsgsRs>

Interpreting the Report Response 113

(c) 2013 Intuit Inc. All rights reserved.

Figure 9-4 Sample transaction detail report (see corresponding qbXML report
response)

Order Column

The Order column that appears in the user interface on some reports includes a checkmark

to indicate when a particular item should be reordered. In the SDK, this column is

represented by the Suggested Reorder field. Report responses use a Boolean value for this

field (True = checkmark).

Including Personal Data in Reports

In QuickBooks, the application must have special permission to view fields that contain

personal data such as SSNOrTaxID. If your application requests a report that contains such

data, QuickBooks checks the required permission before it returns the personal data. If the

application does not have the appropriate permission, the following status message is

returned:

status code 3261: The integrated application has no permission to access

personal data.

114 Chapter 9: Generating Reports

(c) 2013 Intuit Inc. All rights reserved.

This status message might be generated, for example, when an application issues a request

for a report that shows columns for SSN and the application does not have the required

permission to view that data.

Including Payroll Data in Reports

The following payroll data has several restrictions associated with it:

• IncomeSubjectToTax

• PayrollItemDetail

• WageBase

• WageBaseTips

In order to be included in a payroll report

• The administrative user must have granted the application permission to view personal

data, as described in the previous section, and

• The application must be accessing a company file that is currently signed up for a

subscription to a payroll service

If you send a report query and do not have the proper access to the company file, the

following status message is returned:

status code 3262: In order to complete this request, the company data file

has to be subscribed to the Intuit Payroll Service.

It is important to note that if you request a Detail report and specify a restricted value for an

IncludeColumn field and you do not have the appropriate access to view that information,

the entire request fails.

My Report Has No Data!

Each category defines a request for a group of different QuickBooks reports. Not all fields

defined for the request apply to all reports within the group. Because of this, it is possible to

create a request that is programmatically correct (that is, is valid qbXML or compilable

QBFC code) but that asks for fields that are invalid for the particular report type. In these

cases, no data is returned. (In other cases, data is not returned because the particular type of

data is not implemented in the SDK.)

As you create the report request, check the QuickBooks user interface to determine whether

the relevant fields are actually included in the report type you’re interested in. Also, check

that the SDK supports all the fields you’re requesting (Table 9-11 through Table 9-17).

Status code 3151 and the following status message are returned when you request a field

that is not supported by the requested report:

Cannot use the element XXX in this request.

Valid Request Options for Individual Report Types 115

(c) 2013 Intuit Inc. All rights reserved.

This message would be generated, for example, if you requested a Physical Inventory

Worksheet along with an entity filter. The entity filter is not used by this report.

A different status code is returned when a field is supported, but a particular value for that

field is not supported. In this case, you receive status code 3152, along with the following

message:

The enumerated value XXX may not be used in the element YYY in this

request.

For example, in a PurchaseByVendorSummary report, the element SummarizeColumnsBy

is supported, but the value Vendor is not supported.

Valid Request Options for Individual Report Types

Tables 4-11 through 4-18 list valid request options for different report types. An “X” in the

column indicates that this is a valid request option. Each table contains reports for a given

report category.

Table 9-11 Aging Reports: Valid Options

NOTE ReportAgingAsOf is an enum (Today, ReportEndDate); in this table an “X” indicates the SDK supports this
report option. IncludeAccounts is also an enum (InUse or All);as in QuickBooks, this option is supported only in the
Collections Report.

Table 9-12 Job Reports: Valid Options

NOTE Dates includes TotalOnly, Day, Week, TwoWeek, FourWeek, HalfMonth, Month, Quarter, Year. Reports support either
all dates or no dates.

Report
Include
Columns ReportAgingAsOf IncludeAccounts

APAgingDetail Supports all X

APAgingSummary (none) X

AR AgingDetail Supports all X

ARAgingSummary (none) X

CollectionsReport Supports all X X

Report SummarizeColumnsBy Subcolumns Entity Filter

ItemEstimatesVsActuals Dates and Class X

ItemProfitability Dates and Class X

JobEstimatesVsActualsDetail Dates and Class X Required

JobEstimatesVsActualsSummary Dates and Class X

JobProfitabilityDetail Dates and Class X Required

JobProfitabilitySummary Dates and Class X

116 Chapter 9: Generating Reports

(c) 2013 Intuit Inc. All rights reserved.

Table 9-13 Time Reports: Valid Options

NOTE Time Reports do not support AccountFilter or TxnTypeFilter.

Report SummarizeColumnsBy
Report
Calendar Return Rows

Return
Columns

TimeByItem Dates only X X X

TimeByJobDetail no columns

TimeByJobSummary Dates only X X X

TimeByName Dates only X X X

Valid Request Options for Individual Report Types 117

(c) 2013 Intuit Inc. All rights reserved.

Table 9-14 General Detail Reports: Valid Options

NOTE Values shown for IncludeAccount and ReportBalanceAsOf are the default values used by
QuickBooks if not specified in the request. “None” means the report doesn’t use the setting.

Report
Dates
Allowed

Account
Filter

Include-
Accounts

Report-
Balance-
AsOf

1099Detail X InUse Current

AuditTrail X None None

BalanceSheetDetail X All Current

CheckDetail X InUse Current

CustomerBalanceDetail X InUse Current

DepositDetail X InUse Current

EstimatesByJob X InUse Current

ExpenseByVendorDetail X InUse Current

GeneralLedger X All Current

IncomeByCustomerDetail X InUse Current

IncomeTaxDetail X InUse Current

InventoryValuationDetail X InUse Current

JobProgressInvoicesVs-

Estimates

Journal X InUse Current

MissingChecks X Required None None

OpenInvoices X InUse Current

OpenPOs X InUse Current

OpenPOsByJob X InUse Current

OpenSalesOrderByCustomer X InUse Current

OpenSalesOrderByItem X InUse Current

PendingSales X InUse Current

ProfitAndLossDetail X InUse Current

PurchaseByItemDetail X InUse Current

PurchaseByVendorDetail X InUse Current

SalesByCustomerDetail X InUse Current

SalesByItemDetail X InUse Current

SalesByRepDetail X InUse Current

TxnDetailByAccount X InUse Current

TxnListByCustomer X InUse Current

TxnListByDate X InUse Current

TxnListByVendor X InUse Current

UnbilledCostsByJob X InUse Current

UnpaidBillsDetail X InUse Current

VendorBalanceDetail X InUse Current

118 Chapter 9: Generating Reports

(c) 2013 Intuit Inc. All rights reserved.

Table 9-15 General Summary Reports:
Valid Options for SummarizeColumnsBy (Part 1 of 4)

*All reports except PhysicalInventoryWorksheet also support macro/custom Dates

NOTE Dates includes TotalOnly, Day, Week, TwoWeek, FourWeek, HalfMonth, Month, Quarter, Year. Reports support either
all dates or no dates.

NOTE All report types support the value “Total Only” for SummarizeColumnsBy.

Report Dates*
Customer-
Job Vendor Employee

Payroll-
Item-
Detail

BalanceSheetPrevYearComp X

BalanceSheetStandard X

BalanceSheetSummary X

CustomerBalanceSummary X

ExpenseByVendorSummary X

IncomeByCustomerSummary X

IncomeTaxSummary

InventoryStockStatusByItem

InventoryStockStatusByVendor

InventoryValuationSummary

PhysicalInventoryWorksheet

ProfitAndLossByClass X X X X X

ProfitAndLossByJob X X X X X

ProfitAndLossPrevYearComp X X X X X

ProfitAndLossStandard X X X X X

ProfitAndLossYTDComp X X X X X

PurchaseByItemSummary X X X X

PurchaseByVendorSummary X

SalesByCustomerSummary X

SalesByItemSummary X X X X

SalesByRepSummary X

SalesTaxLiability

SalesTaxRevenueSummary X X X X X

TrialBalance

VendorBalanceSummary X

Valid Request Options for Individual Report Types 119

(c) 2013 Intuit Inc. All rights reserved.

Table 9-16 General Summary Reports:
Valid Options for SummarizeColumnsBy (Part 2 of 4)

Report Payee Rep Class ItemType ItemDetail

BalanceSheetPrevYearComp

BalanceSheetStandard

BalanceSheetSummary

CustomerBalanceSummary

ExpenseByVendorSummary

IncomeByCustomerSummary

IncomeTaxSummary

InventoryStockStatusByItem

InventoryStockStatusByVendor

InventoryValuationSummary

PhysicalInventoryWorksheet

ProfitAndLossByClass X X X X X

ProfitAndLossByJob X X X X X

ProfitAndLossPrevYearComp X X X X X

ProfitAndLossStandard X X X X X

ProfitAndLossYTDComp X X X X X

PurchaseByItemSummary X X X

PurchaseByVendorSummary X X X X

SalesByCustomerSummary X X X X

SalesByItemSummary X X X

SalesByRepSummary X X X X

SalesTaxLiability

SalesTaxRevenueSummary X X X X X

TrialBalance

VendorBalanceSummary

120 Chapter 9: Generating Reports

(c) 2013 Intuit Inc. All rights reserved.

Table 9-17 General Summary Reports:
Valid Options for SummarizeColumnsBy (Part 3 of 4)

Report ShipMethod Terms
Payment-
Method

SalesTax-
Code Account

BalanceSheetPrevYearComp

BalanceSheetStandard

BalanceSheetSummary

CustomerBalanceSummary

ExpenseByVendorSummary

IncomeByCustomerSummary

IncomeTaxSummary

InventoryStockStatusByItem

InventoryStockStatusByVendor

InventoryValuationSummary

PhysicalInventoryWorksheet

ProfitAndLossByClass X X X X

ProfitAndLossByJob X X X X

ProfitAndLossPrevYearComp X X X X

ProfitAndLossStandard X X X X

ProfitAndLossYTDComp X X X X

PurchaseByItemSummary X X X X

PurchaseByVendorSummary X X X X

SalesByCustomerSummary X X X X

SalesByItemSummary X X X X

SalesByRepSummary X X X X

SalesTaxLiability

SalesTaxRevenueSummary X X X X

TrialBalance

VendorBalanceSummary

Valid Request Options for Individual Report Types 121

(c) 2013 Intuit Inc. All rights reserved.

Table 9-18 General Summary Reports:
Valid Options for SummarizeColumnsBy (Part 4 of 4)

NOTE Subcolumns is a Boolean; either return subcolumns or do not return subcolumns.
ReportCalendar can be FiscalYear, CalendarYear, or TaxYear.
ReturnRows and ReturnColumns can be ActiveOnly, NonZero, or All.

Report Subcolumns
Return
Rows

Return
Columns

Report
Calendar

Report
Basis

BalanceSheetPrevYearComp X NonZero ActiveOnly FiscalYear X

BalanceSheetStandard X NonZero ActiveOnly FiscalYear X

BalanceSheetSummary X NonZero ActiveOnly FiscalYear X

CustomerBalanceSummary X NonZero ActiveOnly FiscalYear no

ExpenseByVendorSummary X ActiveOnly ActiveOnly FiscalYear X

IncomeByCustomerSummary X ActiveOnly ActiveOnly FiscalYear X

IncomeTaxSummary no ActiveOnly Active3

Only

TaxYear X

InventoryStockStatusByItem no no no no no

InventoryStockStatusByVendor no no no no no

InventoryValuationSummary no no no no no

PhysicalInventoryWorksheet no no no no no

ProfitAndLossByClass X ActiveOnly ActiveOnly FiscalYear X

ProfitAndLossByJob X ActiveOnly ActiveOnly FiscalYear X

ProfitAndLossPrevYearComp X ActiveOnly ActiveOnly FiscalYear X

ProfitAndLossStandard X ActiveOnly ActiveOnly FiscalYear X

ProfitAndLossYTDComp X ActiveOnly ActiveOnly FiscalYear X

PurchaseByItemSummary X NonZero ActiveOnly FiscalYear X

PurchaseByVendorSummary X ActiveOnly ActiveOnly FiscalYear X

SalesByCustomerSummary X ActiveOnly ActiveOnly FiscalYear X

SalesByItemSummary X ActiveOnly ActiveOnly FiscalYear X

SalesByRepSummary X ActiveOnly ActiveOnly FiscalYear X

SalesTaxLiability no ActiveOnly ActiveOnly Calendar-

Year

X

SalesTaxRevenueSummary X ActiveOnly ActiveOnly Calendar-

Year

X

TrialBalance no ActiveOnly ActiveOnly FiscalYear X

VendorBalanceSummary X NonZero ActiveOnly FiscalYear no

122 Chapter 9: Generating Reports

(c) 2013 Intuit Inc. All rights reserved.

Table 9-19 Column types and corresponding data types

ColType IncludeColumn DataType

Account X STRTYPE

Addr1 STRTYPE

Addr2 STRTYPE

Addr3 STRTYPE

Addr4 STRTYPE

Addr5 STRTYPE

Aging X INTTYPE

Amount X AMTTYPE

AmountDifference X AMTTYPE

AverageCost X AMTTYPE

BilledDate X DATETYPE

BillingStatus X ENUMTYPE

Blank STRTYPE

CalculatedAmount X AMTTYPE

Class X STRTYPE

ClearedStatus X ENUMTYPE

CostPrice X AMTTYPE

CreateDate DATETYPE

Credit X AMTTYPE

CustomField STRTYPE

Date X DATETYPE

Debit X AMTTYPE

DeliveryDate X DATETYPE

DueDate X DATETYPE

Duration TIMEINTERVAL-

TYPE

EarliestReceiptDate DATETYPE

EstimateActive X ENUMTYPE

FOB X STRTYPE

IncomeSubjectToTax X AMTTYPE

Invoiced X QUANTYPE

IsAdjustment BOOLTYPE

Item X STRTYPE

ItemDesc X STRTYPE

ItemVendor STRTYPE

Label STRTYPE

LastModifiedBy X STRTYPE

Memo X STRTYPE

ModifiedTime X STRTYPE

Valid Request Options for Individual Report Types 123

(c) 2013 Intuit Inc. All rights reserved.

Name X STRTYPE

NameAccountNumber X STRTYPE

NameAddress X STRTYPE

NameCity X STRTYPE

NameContact X STRTYPE

NameEmai X STRTYPE

NameFax X STRTYPE

NamePhone X STRTYPE

NameState X STRTYPE

NameZip X STRTYPE

OpenBalance X AMTTYPE

OriginalAmount X AMTTYPE

PaidAmount X AMTTYPE

PaidStatus X STRTYPE

PaidThroughDate X DATETYPE

PaymentMethod X STRTYPE

PayrollItem X STRTYPE

Percent PERCENTTYPE

PercentChange PERCENTTYPE

PercentOfTotalRetail PERCENTTYPE

PercentOfTotalValue PERCENTTYPE

PhysicalCount INTTYPE

PONumber X STRTYPE

PrintStatus X STRTYPE

ProgressAmount X AMTTYPE

ProgressPercent X PERCENTTYPE

Quantity X QUANTYPE

QuantityAvailable X QUANTYPE

QuantityOnHand X QUANTYPE

QuantityOnOrder QUANTYPE

QuantityOnSalesOrder X QUANTYPE

ReceivedQuantity X QUANTYPE

RefNumber X STRTYPE

ReorderPoint QUANTYPE

RetailValueOnHand AMTTYPE

RunningBalance X AMTTYPE

SalesPerWeek QUANTYPE

SalesRep X STRTYPE

SalesTaxCode X STRTYPE

ShipDate X DATETYPE

ColType IncludeColumn DataType

124 Chapter 9: Generating Reports

(c) 2013 Intuit Inc. All rights reserved.

NOTE The Transaction ID does not appear in the QuickBooks user interface. This information can only be
requested in a report by the SDK.

ShipMethod X STRTYPE

ShipToAddr1 STRTYPE

ShipToAddr2 STRTYPE

ShipToAddr3 STRTYPE

ShipToAddr4 STRTYPE

ShipToAddr5 STRTYPE

SONumber STRTYPE

SourceName X STRTYPE

SplitAccount X STRTYPE

SSNOrTaxID X STRTYPE

SuggestedReorder BOOLTYPE

TaxLine X STRTYPE

TaxTableVersion X STRTYPE

Terms X STRTYPE

Total AMTTYPE

TxnID (see Note below) X IDTYPE

TxnNumber X INTTYPE

TxnType X STRTYPE

UnitPrice X AMTTYPE

UserEdit X STRTYPE

ValueOnHand X AMTTYPE

WageBase X AMTTYPE

WageBaseTips X AMTTYPE

ColType IncludeColumn DataType

Modifying Objects in General 125

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 10 1

MODIFYING AND DELETING TRANSACTIONS AND LIST OBJECTS 1

If you intend to modify transactions or list objects, you need to know what is in this chapter

or you won’t be successful when you send the Mod request (hint: edit sequences). Or, you

may be successful in executing the Mod request, but find you are unexpectedly missing

scads of your transaction line item data (hint: specifying the TxnLineID of each line you

want to retain).

Modifying Objects in General

The QB SDK allows modification of many list objects and transactions. For a complete

listing, see the Technical Overview. To modify a list object, you must supply the ListID and

EditSequence elements for the list to be modified. To modify a transaction, you must

supply the TxnID and the EditSequence elements for the transaction to be modified.

Edit Sequence

Every time an object is changed, QuickBooks changes the value of the EditSequence

element. In response to an Add, Modify, or Query request, QuickBooks returns the

EditSequence. When your application attempts to modify an object, QuickBooks compares

the EditSequence of your application’s version of the object with the EditSequence of its

own version of the object. If they match, then your application is up to date and

QuickBooks continues with the operation. If they don’t match, QuickBooks rejects the

request and returns an error.

If the Modify request is processed successfully, QuickBooks returns an ObjectRet response

(where Object is the name of the object modified).

One Way to Delete an Element’s Value

To remove the current value of an object that already exists in QuickBooks, specify the

element without any data in a Modify request. Listing 10-1, for example, shows clearing the

sales price, purchase cost, and a parent reference.

______Listing 10-1 Modify request

126 Chapter 10: Modifying and Deleting Transactions and List Objects

(c) 2013 Intuit Inc. All rights reserved.

<QBXML>

<QBXMLMsgsRq onError = "continueOnError">

<ItemServiceModRq requestID = "101">

<ItemServiceMod>

<ListID>60000-933272656</ListID>

<EditSequence>933272656</EditSequence>

<ParentRef>

<ListID></ListID>

</ParentRef>

<SalesAndPurchaseMod>

<SalesPrice></SalesPrice>

<PurchaseCost></PurchaseCost>

</SalesAndPurchaseMod>

 </ItemServiceMod>

 </ItemServiceModRq>

 </QBXMLMsgsRq>

</QBXML>

Clearing References

Using a Modify request, you can clear a reference in one of four ways:

• Provide an empty reference:

<ClassRef />

• Provide an empty ListID:

<ClassRef>

<ListID></ListID>

</ClassRef>

• Provide an empty FullName tag:

<ClassRef>

<FullName></FullName>

</ClassRef>

• Provide an empty ListID and an empty FullName:

<ClassRef>

<ListID></ListID>

<FullName></FullName>

</ClassRef>

Clearing Aggregates

Clearing an aggregate such as an address or shipping address is similar to clearing a

reference in a Modify request. You can either provide empty versions of all the elements in

the aggregate, or you can simply provide an empty aggregate:

How to Modify Transactions 127

(c) 2013 Intuit Inc. All rights reserved.

<BillAddress>

<Addr1></Addr1>

<Addr2></Addr2>

<Addr3></Addr3>

<Addr4></Addr4>

<City></City>

<State></State>

<PostalCode></PostalCode>

<Country></Country>

</BillAddress>

or

<BillAddress />

If only a subset of an aggregate is provided in the Modify request, the subset is modified

and the rest of the aggregate is preserved. For example, if you specify only the PostalCode

in a Modify request for an address that was added in a previous request, only the

PostalCode field will be changed.

How to Modify Transactions

This section provides additional details on modifying transactions. If you’re mainly

interested in an overview at this point, you can skip the remaining sections on modifying

transactions and continue reading the section on “Deleting an Object,” beginning on page

134.

IMPORTANT

Unless noted otherwise, if you are making changes to any
line item, you need to specify all of the line items to be
retained in the transaction. Otherwise, any lines omitted in
the transaction Mod operation will be dropped!

Currently, the following transactions can be modified:

• Bills

• BillPaymentCheck

• BuildAssembly

• Charge

• Check

• CreditCardCharge

• CreditCardCredit

• Credit Memos

• Deposits

• Estimates

• Invoices

128 Chapter 10: Modifying and Deleting Transactions and List Objects

(c) 2013 Intuit Inc. All rights reserved.

• JournalEntry

• ItemReceipt

• PriceLevel

• Purchase Orders

• ReceivePayment

• Sales Orders

• SalesReceipt

• Statement Charges

• TimeTracking

• VendorCredit

Each transaction Modify request must include the following fields:

• Transaction ID (TxnID) of the transaction to modify (obtained from the TxnRet object,

where “Txn” substitutes for the exact name of the transaction)

• Edit sequence (to ensure that changes are being made to the most recent copy of the

transaction)

Each request message (for example, PurchaseOrderModRq) has a corresponding response

message (for example, PurchaseOrderModRs). A TxnRet object is returned each time a

Modify request succeeds, or when the provided edit sequence is invalid. If the Modify

request fails for a reason other than an invalid edit sequence, the TxnModRs contains a

status code and status message. (A TxnRet object is not returned in this case.)

Parts of a Transaction

For modification purposes, transactions consist of two parts: a table of line items, which is

shown in the circled areas of Figure 10-1, and the transaction body,which is everything else

in the transaction form. Rules for modifying the components of the body of a transaction

are slightly different from the rules for modifying pieces of the line item table, as described

in the following paragraphs.

Modifying the Body of a Transaction

To modify one of the components in the body of a transaction, specify the element tag with

the new value. For example:

How to Modify Transactions 129

(c) 2013 Intuit Inc. All rights reserved.

<PurchaseOrderModRq>

<PurchaseOrderMod>

 <TxnID>100-100052155</TxnID>

 <EditSequence>100052155</EditSequence>

<ShipToEntityRef>

<FullName>Tom Jones</FullName>

</ShipToEntityRef>

</PurchaseOrderMod>

</PurchaseOrderModRq>

If an element has a default value, specifying an empty element tag results in the default

value being used. If an element has no default value, specifying an empty element tag clears

the value.

Some fields in a given transaction require a value and cannot be cleared. For example, in a

purchase order, the due date, expected date, and transaction date must be filled in. Also,

some Boolean values such as printing state cannot be cleared because there is no default

value for the logical state. In the Onscreen Reference, see the Modify request for each

modifiable transaction for a table that lists the fields that can be cleared within that

transaction (for example, see PurchaseOrderModRq, InvoiceModRq, and so on).

130 Chapter 10: Modifying and Deleting Transactions and List Objects

(c) 2013 Intuit Inc. All rights reserved.

Figure 10-1 Body and line items within a transaction

Modifying Transaction Body Without Modifying Line Items

If you are not making any changes to the line item table of a transaction, do not include

references to any of the lines in the transaction Modify request. The line item table will be

retained as is, and ignoring the table completely will speed up processing of the request.

Shortcut Way to Retaining a Line Item Exactly As Is

Remember: if you modify any line item, you need to specify all of the other line items or

else they will be dropped as a result of the Mod. However, you need not fully specify the

line item with all its ItemRef, Quantity, and other elements. You need only specify its

TxnLineID as follows:

How to Modify Transactions 131

(c) 2013 Intuit Inc. All rights reserved.

<PurchaseOrderLineMod>

<TxnLineID>101</TxnLineID>

</PurchaseOrderLineMod>

This will retain the line item exactly as it was prior to the Mod.

Modifying a Line Item

To modify a line item, specify the TxnLineID and any new data for the elements in the line

item.

Inserting a New Line Item In a Mod Operation

You can add new lines to an existing transaction. However, a common mistake is to use the

ItemLineAdd aggregate. That won’t work. You have to use the ItemLineMod aggregate

with the TxnLineID element set to -1 (and then specify the new data for that new line).

This new line can be used for a new line item, or it can be an empty line used as a separator

or comment in the transaction table.

Deleting a Line Item

To delete a line item from the table, simply omit it from the Modify request.

Example: Modifying Transaction Lines

The following example shows modifying line items in a transaction table. Line item 1 has

changes made to its rate and quantity values. Line item 2 has a change made to its

description. Line item 3 does not change but still needs to be specified in the Modify

request in order to be retained.

<PurchaseOrderModRq>

 <PurchaseOrderMod>

 <TxnID>100-100052155</TxnID>

 <EditSequence>100052155</EditSequence>

.

 .

.

 <!—- modifying the quantity and rate of the itemLine1 -->

 <PurchaseOrderLineMod>

 <TxnLineID>101</TxnLineID>

 <Quantity>12</Quantity>

 <Rate>10.00</Rate>

 </PurchaseOrderLineMod>

 <!—- modifying the description of the itemLine2 -->

 <PurchaseOrderLineMod>

132 Chapter 10: Modifying and Deleting Transactions and List Objects

(c) 2013 Intuit Inc. All rights reserved.

 <TxnLineID>102</TxnLineID>

 <Desc>new description</Desc>

 </PurchaseOrderLineMod>

 <!— even if the itemline3 doesn’t change, it needs to be

specified in the Modify request.

Omitting the itemline3 is interpreted as a deletion -->

 <PurchaseOrderLineMod>

 <TxnLineID>103</TxnLineID>

 </PurchaseOrderLineMod>

 </PurchaseOrderMod>

</PurchaseOrderModRq>

Example: Modifying Groups within the Line Item Table

If you want to retain a group within a modified table exactly as is, you can pass in

<TxnLineGroupMod> (for example, PurchaseOrderLineGroupMod) and specify the

TxnLineID for the group. This shortcut indicates to keep the group and its items as

originally specified. However, if you want to change any of the items in the group, you

need to pass in the whole group and its items again (the “new look”).

The following example shows inserting a new line item line into an item group. The table

below shows the invoice lines before and after the addition. The invoice has one item group

that has two components: service1 and service2. A new line is added following service1.

<InvoiceModRq>

 <InvoiceMod>

 <TxnID>100-100052155</TxnID>

 <EditSequence>100052155</EditSequence>

 …

 …

 <!—- no changes to item group start -->

 <InvoiceLineGroupMod>

 <TxnLineID>101</TxnLineID>

 <InvoiceLineMod>

 <TxnLineID>102</TxnLineID>

 </InvoiceLineMod>

<!—- Pass in a TxnLineID = -1 indicates that it is a new itemline -->

 <InvoiceLineMod>

Original invoice table Invoice table after modification

ItemLine1 (TxnLineID=101) - Group
start

ItemLine1 (TxnLineID=101) - Group start

ItemLine2 (TxnLineID=102) -
service1

ItemLine2 (TxnLineID=102) - service1

ItemLine3 (TxnLineID=103) -
service 2

ItemLine3 (TxnLineID=-1) - new line
(service3)

ItemLine4 (TxnLineID=103) - service2

How to Modify Transactions 133

(c) 2013 Intuit Inc. All rights reserved.

 <TxnLineID>-1</TxnLineID>

 <ItemRef>

 <FullName>service3</FullName>

 </ItemRef>

 <Quantity>10</Quantity>

 <Rate>3.20</Rate>

 </InvoiceLineMod>

 <InvoiceLineMod>

 <TxnLineID>103</TxnLineID>

 </InvoiceLineMod>

<!—- the object representing the end of the group is not returned in the

InvoiceRet object (or on any transaction ret). Therefore, the user cannot

provide its TxnLineID. You cannot change directly the line representing the

End of the group or delete it. -->

 </InvoiceLineGroupMod>

 </InvoiceMod>

</InvoiceModRq>

Example: Modifying Item Lines in an Item Group

The following example shows modifying item lines in an item group. The table below

shows the invoice lines before and after the modifications. The invoice has one item group

that has two components: service1 and service2. Changes are made here to the item group

itself (quantity) as well as to the two service item lines.

<InvoiceModRq>

 <InvoiceMod>

 <TxnID>100-100052155</TxnID>

 <EditSequence>100052155</EditSequence>

 …

 …

<InvoiceLineGroupMod>

 <TxnLineID>101</TxnLineID>

 <Quantity>15</Quantity

 <InvoiceLineMod>

 <TxnLineID>102</TxnLineID>

Original invoice table Invoice table after modification

ItemLine1 (TxnLineID=101) - Group
start

ItemLine1 (TxnLineID=101) - Group start:
change the quantity

ItemLine2 (TxnLineID=102) -
service 1

ItemLine2 (TxnLineID=102) - service1:
change description

Item Line3 (TxnLineID=103) -
service 2

ItemLine3 (TxnLineID=103) - service 2:
change item name to service 3, quantity
and rate

134 Chapter 10: Modifying and Deleting Transactions and List Objects

(c) 2013 Intuit Inc. All rights reserved.

 <Desc>new description</Desc>

 </InvoiceLineMod>

 <InvoiceLineMod>

 <TxnLineID>103</TxnLineID>

 <ItemRef>

 <FullName>service3</FullName >

 </ItemRef>

 <Quantity>10</Quantity>

 <Rate>3.20</Rate>

 </InvoiceLineMod>

</InvoiceLineGroupMod>

 </InvoiceMod>

 </InvoiceModRq>

About Modifying Rate, Quantity, and Amount Line Item Fields

Many transactions, including purchase orders and invoices, include Rate, Quantity, and

Amount elements. The general formula used to calculate rate, quantity, and amount is

Quantity * Rate = Amount

However, since QuickBooks always calculates these values, giving rate and amount in the

same request is not permitted. If you do supply both values in a request, QuickBooks enters

a warning in the log file, and the rate you supply is ignored. QuickBooks calculates the rate

as

Amount / Quantity

Note that Amount, Rate, and Quantity fields cannot be cleared.

Deleting an Object

Unlike the many forms of Add and Mod requests, which specify the object explicitly (for

example, CustomerAdd, InvoiceAdd, CreditMemoAdd, and so on), delete requests take

only one form for transactions (TxnDelRq) and one form for list objects (ListDelRq). You

cannot delete a whole list at once; instead, you delete individual objects in the list, such as a

single employee or customer.

When you delete a transaction or a list object, you need to specify its QuickBooks ID (the

TxnID or ListID) and the object type. See Chapter 3 of the Technical Overview for a list of

objects that can be deleted.

Deleting an Object 135

(c) 2013 Intuit Inc. All rights reserved.

Must be in Single-User Mode (Except for Enterprise)

To delete a list object, you must have the QuickBooks company file open in single-user

mode. However, for QuickBooks Enterprise edition, it is possible to delete list items in

multi user mode.

Accountant Copy Restrictions

Some transaction and list operations may fail if an Accountant’s Copy has been made.

Beginning with QB 2009 and qbXML 8.0, you can use the Accountant Copy Exists request

to check for this before running requests that will fail if the accountant copy exists.

Locked Transactions

A locked transaction is a transaction that is currently being edited in the user interface.The

QuickBooks SDK also locks transactions for the time required to write them during an Add

or Modify operation. If your application attempts to delete or void a locked transaction, you

will receive an error (status code 3175). You will also receive an error if you attempt to

delete or void a transaction (for example, a sales receipt) while a linked transaction (such as

a deposit) is locked in the user interface (error 3176 “related object is in use.).

For this reason, if you receive status code 3175, you will not know whether the locked

transaction is the one you are trying to delete or void, or one that is linked to it.

About Closed Transactions

Under certain conditions, you can delete (or void) a transaction that was created prior to the

company’s closing date. There must be no password set by the QuickBooks Admin under

“edit transaction on or before date” in the Accounting preferences. Also, the user must have

the appropriate permissions, as described in the QuickBooks user interface.

Before a qualified user can delete or void a transaction from within the QuickBooks user

interface, the following warning appears: “The transaction’s date is prior to the closing date

for this company file. This will affect your accounting. Are you sure you want to make this

change?” Your application should check the company preferences (using a

PreferencesQueryRq) to find out the closing date of the company so you can issue a similar

warning when your users try to delete a transaction that is already closed.

If your application tries to delete or void a closed transaction, you will receive status code

3161.

NOTE

Starting with QB 2009 and qbXML 8.0, closing date
preferences for the company file can be obtained from a
PreferencesQuery.

136 Chapter 10: Modifying and Deleting Transactions and List Objects

(c) 2013 Intuit Inc. All rights reserved.

About Permissions

If your application attempts an operation without having the correct permissions, you will

receive status code 3260 (“Insufficient permission level to perform this action”). For

information about permissions, see the onscreen help in the QuickBooks user interface.

Voiding an Object

Use a TxnVoidRq request message to void a transaction. See Chapter 3 of the Technical

Overview for a list of transactions that can be voided.

• Voiding a transaction changes the transaction amount to zero, but leaves a record of the

transaction in QuickBooks. It is not possible to void a list object.

• Deleting a transaction removes the transaction from QuickBooks altogether.

A TxnVoidRq contains two elements, both required: the TxnVoidType element indicates the

transaction type, and the TxnID identifies the exact transaction to be voided. A void request

will return a TxnVoidRs response message, which can include the original information that

was sent in the request, plus TimeCreated, TimeModified, and the RefNumber of the

transaction that was voided.

Core Differences Between Custom Fields and Private Data 137

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 11 1

DATA EXT: USING CUSTOM FIELDS AND PRIVATE DATA 1

If you want to store a SMALL amount of your own data in QuickBooks list objects or in

transactions using the QB SDK, there are two ways to go about it. You can choose to store

the data in custom fields, which are public, viewable within the QuickBooks UI, and can be

printed along with other transaction data. Or, you can use private data, which are visible

only to your application and to other applications that are granted access by your

application.

Both of these methods (customer field and private data) use the same SDK mechanism,

which is the data extension, or “data ext” in common QB SDK parlance. This mechanism

does have some quirks, which results in a fair number of questions for us here at IPP. So, if

you’re new to this feature, you’ll want to read this chapter carefully.

IMPORTANT

Data extensions are really meant for SMALL amounts of data:
a reference to something in your database, and so forth.
Currently, the maximum amount of DataExt data for a given
object (for example, customer John Smith) is 4096 bytes.
This is the amount available for all private data from all
applications!

Core Differences Between Custom Fields and Private Data

Table 11-1 shows the key differences between public custom fields and the private data.

138 Chapter 11: Data Ext: Using Custom Fields and Private Data

(c) 2013 Intuit Inc. All rights reserved.

Table 11-1 Things You Can and Can’t Do with Custom Fields and Private Data

Can You Do This With It?
Custom
Field

Private
Data

Can a QuickBooks user access it (view/print)
within the QuickBooks UI?

(This means add, modify, delete via QuickBooks UI
as well.)

Yes No

Use them with virtually any object? No*
*Can be defined only
for customers,
employees, items, and
vendors.

Can be inherited by
certain transactions
from customer and item
(see “A Cool Feature:
Transactions Inherit
From Customer, Item”).

Yes

Use them for a variety of data types? No*
Must be STR255 type,
(string, max 255 chars)

Yes

Define as many as I want? No*
*QuickBooks allows a
fixed number of custom
fields for customer, for
item, for vendor, and
for employee.

This relatively small
fixed number must be
shared by the end user
and all integrated
solutions!

Yes*
You can define as many as
you want, but you cannot
have more than 4096 bytes
of private data per any
given object (e.g.,
customer John Smith)

Attach it directly to a transaction? Yes and No*
Yes, beginning with
qbXML spec 6.0, you
can use the Other,
Other1, and Other2
custom fields built into
transactions.

No, you cannot attach
any other custom fields.
You must define custom
fields for customer or
item, and the
transaction inherits
these.

Yes*
But not to transaction
lines! (There is no way to
retrieve the private data
from transaction lines.)

Access it from any SDK integrated application? Yes No*
*Only to those application
that that know the GUID
used in the creation of the
data ext definition.

How Do I Create Data Extensions? 139

(c) 2013 Intuit Inc. All rights reserved.

How Do I Create Data Extensions?

On the theory that a picure is worth a thousand words, let’s start off with a couple of

diagrams.

Use it in transaction lines? Yes No*
*Not returned in queries

Pull its data into a column on reports via the SDK? No*
This is not available via
the SDK report
features.

However, custom field
data can be displayed in
detail reports. In this
case, the QuickBooks
user must customize
the detail report to
include the custom field

No

Can You Do This With It?
Custom
Field

Private
Data

140 Chapter 11: Data Ext: Using Custom Fields and Private Data

(c) 2013 Intuit Inc. All rights reserved.

Figure 11-1 Order of creation: Data Ext Definition created first, then Data Ext

As we hope to convey in Figure 11-1, you start off your custom field or private data work

by creating the data ext definition first, during which process you specify the objects you

want to assign this definition to. We happened to pick customer, employee, and vendor,

which will work for both custom data and private data.

After you create the definition and assign it to one or more object types, you can write the

actual custom data or private data to an instance of the object that has the definition, as we

show in Figure 11-2.

How Do I Create Data Extensions? 141

(c) 2013 Intuit Inc. All rights reserved.

Figure 11-2 Writing DataExt data to a customer instance: John Sidmark

As indicated in Figure 11-2, we have already added a data ext definition named “Category”

to the object type Customer. Because Customer now has the Category definition, we can

write Category data to an individual customer, say, John Sidmark. You do this via the SDK

request DataExtAdd or DataExtMod.

The SDK knows to write the data to the John Sidmark record because the ObjectRef inside

the DataExtAdd specifies “John Sidmark”. The SDK knows how to write the data because

the DataExtAdd tells it to use the definition “Category.”

Enough Pictures: Show Me Some Code

Listing 11-1 shows how to define a custom field extension and then write data to it. The

sample adds the data ext def “Category” to the Customer object type using the QBFC

library in VB. It then uses that definition to write the data “Gold Member” to a customer,

John Sidmark.

______Listing 11-1 Adding a DataExtDef to Customer and using it to write data to a customer (QBFC)

‘ Build a 6.0 request set and create a data ext def add request

Dim DataExt_Set As IMsgSetRequest

Set DataExt_Set = SessionManager.CreateMsgSetRequest("US", 6, 0)

DataExt_Set.Attributes.OnError = roeContinue

Dim MyDataExtDef As IDataExtDefAdd

Set MyDataExtDef = DataExt_Set.AppendDataExtDefAddRq

‘ We’re making this a custom field, so use 0 for ownerID, STR255TYPE for the type

MyDataExtDef.DataExtName.setValue "Category"

MyDataExtDef.OwnerID.setValue "0"

MyDataExtDef.DataExtType.setValue detSTR255TYPE

MyDataExtDef.AssignToObjectList.Add atoCustomer

142 Chapter 11: Data Ext: Using Custom Fields and Private Data

(c) 2013 Intuit Inc. All rights reserved.

‘ Write data to the custom field using DataExtMod, as a shortcut

‘ For private data, our first write to an object’s data ext MUST be a DataExtAdd

Dim MyDataExtMod As IDataExtMod

Set MyDataExtMod = DataExt_Set.AppendDataExtModRq

MyDataExtMod.DataExtName.setValue "Category"

MyDataExtMod.DataExtValue.setValue "Gold Member"

MyDataExtMod.OwnerID.setValue "0"

MyDataExtMod.ORListTxn.ListDataExt.ListDataExtType.setValue ldetCustomer

MyDataExtMod.ORListTxn.ListDataExt.ListObjRef.FullName.setValue "John Sidmark"

‘ Now send the request to QB

Dim MyDataExt_resp As IMsgSetResponse

Set MyDataExt_resp = SessionManager.DoRequests(DataExt_Set)

SessionManager.EndSession

SessionManager.CloseConnection

Set SessionManager = Nothing

In the sample, notice that we happened to send the data ext def and then write to it within

the same message set. If you do this, you need to build the data ext def first in the request

set, preceding the DataExtAdd/Mod that uses it. Of course, you aren’t required to do it this

way. You could add your data ext definition by iteself and then later use it in your

DataExtAdd/Mod when you need to write data.

If you want to do the same thing in qbXML, here is how it would look:

_____ Listing 11-2 qbXML to add a new DataExtDef

<?xml version="1.0" ?>

<?qbxml version="6.0"?>

<QBXML>

<QBXMLMsgsRq onError = "stopOnError">

<DataExtDefAddRq requestID = "0">

<DataExtDefAdd>

<OwnerID>0</OwnerID>

<DataExtName>Category</DataExtName>

<DataExtType>STR255TYPE</DataExtType>

<AssignToObject>Customer</AssignToObject>

</DataExtDefAdd>

</DataExtDefAddRq>

<DataExtModRq requestID = "1">

<DataExtMod>

<OwnerID>0</OwnerID>

What Makes a Data Ext Definition a Custom Field vs Private? 143

(c) 2013 Intuit Inc. All rights reserved.

<DataExtName>Category</DataExtName>

<ListDataExtType>Customer</ListDataExtType>

<ListObjRef>

< FullName>John Sidmark</FullName>

</ListObjRef>

<DataExtValue>Gold Member</DataExtValue>

</DataExtMod>

</DataExtModRq>

</QBXMLMsgsRq>

</QBXML>

What Makes a Data Ext Definition a Custom Field vs Private?

The die is cast, so to speak, when you create the data ext definition (DataExtDefAdd). You

specify at that time whether the data ext definition is custom or private and you cannot go

back later and modify it to become the other type.

If you look at Listing 11-2, which creates a custom data ext definition, notice the line

<OwnerID>0</OwnerID>

That is the magic code. The OwnerID of zero is reserved for custom fields. If you wanted to

make it private data, you would use a GUID here, like this:

<OwnerID>{E09C86CF-9D6E-4EF2-BCBE-4D66B6B0F754}</OwnerID>

But There is More To It

If you’re creating a custom field, you have to build two other things in your

DataExtDefAdd correctly. Check these two lines from Listing 11-2:

<DataExtType>STR255TYPE</DataExtType>

<AssignToObject>Customer</AssignToObject>

For a custom field definition, the DataExtType is always STR255TYPE. Also, the

AssignToObject must be Customer, or Employee, or Vendor, or Item.

A Cool Feature: Transactions Inherit From Customer, Item

You cannot create a data ext definition for transactions via the SDK. Does this mean you

can’t use custom fields in transactions? No, because transactions inherit custom field

definitions from Customer and Item. (Nothing is inherited from vendor or employee.)

Inheriting from Customer to Transactions

If you were to run the qbXML in Listing 11-2, which builds a custom field definition and

assigns it to the Customer object, this is what you would get in the response:

144 Chapter 11: Data Ext: Using Custom Fields and Private Data

(c) 2013 Intuit Inc. All rights reserved.

Figure 11-3 Response to a custom field DataExtDefAddRq for Customer

We only assigned our data extension definition to Customer. How come all those other

transactions are shown as assigned as well? This is a useful feature of custom fields.

When you add a custom field definition, that definition automatically propagates to all

transaction types that inherit Customer custom fields. This means that you can write (via

DataExtAdd or DataExtMod) data to those transactions using the data ext definitions in

effect for Customer.

Transactions That Inherit Custom Fields from Customer

Here is the propagation for customer:

• Customer

• CreditMemo

• Estimate

• Invoice

• SalesOrder

• SalesReceipt

A Cool Feature: Transactions Inherit From Customer, Item 145

(c) 2013 Intuit Inc. All rights reserved.

IMPORTANT

The custom fields propagated from Customer are available at
the transaction-level, NOT to the line items! For line items,
you’ll need to use the Item propagation, as we show below.

Inheriting from Item to Transactions

Suppose we replaced “Customer” with “Item” in the AssignToObject element in Listing 11-

2 and run the request. Here’s what we would get:

Figure 11-4 Response to a custom field DataExtDefAddRq for Item

Again, the custom field definition assigned to Item automatically propagates to the

transactions shown, and can be used at the line item level!

Transactions That Inherit Custom Fields from Item

Here is the propagation for item:

• Item

• CreditMemo

• Estimate

146 Chapter 11: Data Ext: Using Custom Fields and Private Data

(c) 2013 Intuit Inc. All rights reserved.

• Invoice

• PurchaseOrder

• SalesOrder

• SalesReceipt

Do Individual Transactions Also Inherit Custom Field Values?

Suppose a customer, for example, John Smith, has a custom field named Birthday, and that

custom field is turned on in the template being used by the transaction (see “Making

Custom Fields Show Up In QuickBooks and in Print”). When I create a invoice for John

Smith, does the Birthday field in my Invoice have the Birthday value from John Smith?

Yes. The value from a customer custom field is inherited by the transaction using it. You

can modify this value to any value you want in the transaction, however, without affecting

the John Smith customer record or any other transaction using that custom field.

Writing to Custom Fields Only Affects the Current Transaction

As you specify the customer, items, and so forth to build a transaction, the values of the

custom fields inherited from the customer and items referenced by the invoice are copied

from the customer and the items. Each transaction then stores a private copy of those

custom field values

For example, suppose you have a custom field on the customer that contains a contract

number. You could create many invoices for that customer and set a different contract

number in each one. Similarly, you could build an invoice with multiple line items, each

using the same item but using a different color and material in each line—without affecting

any default setting that might be in the customer or item record itself.

How Do I Get DataExt Data Back Using Queries?

To get the values of custom fields assigned to a list item or transaction, include the

OwnerID filter with a value of 0 (zero) in the query for that list item or transaction. For

private data, instead of the value 0 for the OwnerID, use the GUID that is your OwnerID

for the private data you want back. (Remember that you cannot get private data from

transaction lines!)

Here’s a customer query that includes all custom field data:

Writing Data to a Data Extension 147

(c) 2013 Intuit Inc. All rights reserved.

<?xml version="1.0"?>

<?qbxml version="6.0"?>

<QBXML>

<QBXMLMsgsRq onError="continueOnError">

<CustomerQueryRq requestID="2">

<OwnerID>0</OwnerID>

</CustomerQueryRq>

</QBXMLMsgsRq>

</QBXML>

and here’s the response. Notice the DataExt stuff is always the last thing in the Ret.

Figure 11-5 DataExt values in a Query response

Notice that you can query only using the OwnerID, not the actual DataExt values.

Writing Data to a Data Extension

If you are writing to a custom field, you simply use DataExtModRq, as shown in Listing

11-2.

If you are writing private data, the first time you write to that data extension for a given

object (e.g., customer John Smith), you must use DataExtAdd. All subsequent writes to that

data extension for that object MUST use DataExtMod.

148 Chapter 11: Data Ext: Using Custom Fields and Private Data

(c) 2013 Intuit Inc. All rights reserved.

Clearing a Value from a Data Extension

To clear a value from the data extension in a given object, whether the extension is a

custom field or private data, you must use DataExtDel.

Deleting a Data Extension Definition: Limitations

Once you create a private data ext definition AND assign it to an object type, you cannot

delete that definition using the SDK. It may appear that you can, because the

DataExtDefDel request will appear to succeed. But the private data ext def is still there: you

won’t be able to write to it anymore, nor will you be able to create another private data ext

definition with that same name and OwnerID.

You cannot use DateExtDefDel to delete any custom field definition whether the definition

was assigned in the UI or via the SDK. Moreover, from the SDK, you will not be able to

access a custom field that was deleted from the UI and then re-added with the same name.

Deleting Custom Fields From the QuickBooks UI

You’ll notice you cannot get rid of custom fields from the transaction template. For custom

fields inherited from Customer, you need to go to the Customer Edit form and click on

Define Fields to bring up the custom fields form and delete them there.

For custom fields inherited from Item, go to the Edit Item form, click on Custom Fields,

and click on Define Fields, where you can delete the custom fields.

Making Custom Fields Show Up In QuickBooks and in Print

We’ve already shown how to create the custom fields, write to them, and get data back in

queries. If you stop here, you will be able to write data to the fields and get data back in

queries. But your end user won’t be able to see those custom fields in the expected

QuickBooks transaction forms or in the transactions printed from QuickBooks.

Why is this? The transaction forms, for example, the Create Invoice form, use a transaction

template that QuickBooks itself uses to to display the transaction and to print it. By default,

any custom fields that are added via the SDK are indeed available in the various templates,

but they are turned off: they won’t be visible or be printable. You need to tell your user to

turn them on.

How do you do this? Lets take a look at Figure 11-6, which shows the template dropdown

selection list in the Create Invoices form, with the current selection of the Product Invoice

Modern template.

Making Custom Fields Show Up In QuickBooks and in Print 149

(c) 2013 Intuit Inc. All rights reserved.

Figure 11-6 Template currently in effect for an invoice

From this form, we see no way to get to the template to edit it and turn on the custom Fields

What we need the QuickBooks user to do is to edit the templates directly. To do this, the

user

1. Opens the templates list by selecting Lists->Templates from the main QB menubar.

2. Double-click the template being used for that transaction to bring up the Basic

Customization form for it.

3. Click on the Additional Customization button at the bottom of the form. Note: doing

this on some templates will result in the user being warned that some customizations

may cause the transaction to print improperly on some Intuit pre-printed invoice forms!

This is one issue you’ll need to investigate in advance and tell the user what to do. If

the user chooses to continue, the Additional Customization form will be displayed,

which looks like this:

150 Chapter 11: Data Ext: Using Custom Fields and Private Data

(c) 2013 Intuit Inc. All rights reserved.

4. In the form, the Header tab is for custom fields inherited from Customer, or the “built-

in” custom field named Other. The Columns tab is for custom fields inherited from

Item, or the built-in Other1 and Other2 custom fields. We’ve added two custom fields

to Item, named “Our custom field” and “Ours too!” Notice that the Screen and Print

checkboxes for this are not checked, by default. This means our two custom fields

won’t be visible in QuickBooks and won’t print.

5. The user must check those checkboxes to get the custom fields to display and print.

6. If the user does check these items, the user next needs to return to the Basic

Customization form and use the layout editor to add the new headers and/or columns in

a way that will display/print as desired. Again, changing the layout can impact the use

of Intuit pre-printed forms.

7. After the user makes the custom fields visible/printable as we’ve already described, and

uses the layout editor to position the new custom fields, the user is finished and the

fields will display and print as expected.

I Want to Use Private Data: How Do I Use GUIDs? 151

(c) 2013 Intuit Inc. All rights reserved.

I Want to Use Private Data: How Do I Use GUIDs?

All Microsoft development environments include an application called GUIDGen.exe

which will create a GUID for you that you can copy and paste into your application. You

generally generate the GUID for your app ONCE and hard-code it into a constant variable

in your application when you are developing your app. You would not want to generate a

GUID at runtime because then you wouldn't be able to get at the data extensions you

created in the previous run.

As a design consideration, you should use one GUID OwnerID for your application, not for

each individual data extension. In other words, one application, one GUID for many

DataExt definitions. However, from the technical perspective, you can have as many

GUIDs as you want.

The Format of the GUID within the Request

Notice the GUIDs are placed in the <OwnerID> field with curly braces around the value,

like this:

<OwnerID>{E09C86CF-9D6E-4EF2-BCBE-4D66B6B0F769}</OwnerID>

How Do I Retrieve OwnerIDs?

You cannot retrieve OwnerIDs from QuickBooks. Private data would not be so private if

anyone could discover your GUID and thus write values, perhaps unexpected ones, to your

application.

What is an OwnerIDList?

An OwnerIDList is used in a CompanyQuery to specify a list of GUIDs for private data

when you are doing a company query and want to see private data. You’ll get back all the

private data that you specify in the OwnerIDList.

Using Other, Other1, Other2 in Transactions

Beginning with qbXML 6.0 and QB 2007, you can write to the Other, Other1, and Other2

fields that are available to transactions. The Other field is used for the transaction Header.

Other1 and Other2 are used for the transaction Columns (that is, the values will appear in

the transaction line items).

The Other, Other1, and Other2 fields are available in the transaction templates, but these

are not turned on by default. The QuickBooks user needs to turn these on, as described in

“Making Custom Fields Show Up In QuickBooks and in Print”.

152 Chapter 11: Data Ext: Using Custom Fields and Private Data

(c) 2013 Intuit Inc. All rights reserved.

Writing Custom Field Data to Transaction Lines

Prior to QuickBooks 2006 and qbXML spec 5.0, in order to write data to custom fields in

transaction lines, you had to create the transaction first, then invoke DataExtMod on each

line. As a result, the transaction would get saved once for each invocation of DataExtMod,

which could lead to poor performance.

Beginning with QuickBooks 2006 and qbXML spec 5.0, you can add custom data directly

in the transaction lines as you create them. The following code sample shows you how to

do this:

_____ Listing 11-3 Writing custom data to a transaction line

‘ Assume that invoiceAdd has already been constructed, except for the line items.

Dim orInvoiceLineAdd1 As IORInvoiceLineAdd

' Create the first line item for the invoice

Set orInvoiceLineAdd1 = invoiceAdd.ORInvoiceLineAddList.Append

' Set the values for the first invoice line

orInvoiceLineAdd1.InvoiceLineAdd.ItemRef.FullName.setValue "Installation"

orInvoiceLineAdd1.InvoiceLineAdd.Quantity.setValue 2

‘ Now add your custom field value:

Dim MyDataExt As IDataExt

Set MyDataExt = orInvoiceLineAdd1.InvoiceLineAdd.DataExtList.Append

MyDataExt.OwnerID.setValue ("0")

MyDataExt.DataExtName.setValue ("Truck")

MyDataExt.DataExtValue.setValue ("Dodge")

‘ Just for grins, lets add a second line item

' Set the values for the second invoice line

orInvoiceLineAdd1.InvoiceLineAdd.ItemRef.FullName.setValue "Labor"

orInvoiceLineAdd1.InvoiceLineAdd.Quantity.setValue 1

‘ Add your custom field value again

Set MyDataExt = orInvoiceLineAdd1.InvoiceLineAdd.DataExtList.Append

MyDataExt.OwnerID.setValue ("0")

MyDataExt.DataExtName.setValue ("Truck")

MyDataExt.DataExtValue.setValue ("Ford")

The alert reader will note that while DataExtAdd’s TxnID field allows the useMacro

attribute, the TxnLineID does not. Nor does DataExtMod support useMacro in either field.

This is unfortunate, and I’ll take my case to the engineers!

Modifying Custom Field Data in Transaction Item Lines 153

(c) 2013 Intuit Inc. All rights reserved.

Modifying Custom Field Data in Transaction Item Lines

Modifying custom field data within the transaction lines is no different than modifying

other line item data. The details are provided in Chapter 10, “Modifying and Deleting

Transactions and List Objects.”

154 Chapter 11: Data Ext: Using Custom Fields and Private Data

(c) 2013 Intuit Inc. All rights reserved.

What is a Macro? 155

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 12 1

USING MACROS IN REQUESTS 1

Many requests contain a reference to some other object that is needed for the request to

succeed. This is a problem if you want to create the referenced object in the same batch of

messages (that is, within the same message set) as the requests making the object reference.

How do you get around this? Macros.

What is a Macro?

A macro is a mechanism used to define certain elements that are created in a new request

and subsequently use them in a later request in the same message set or any time within the

same session. This mechanism eliminates the need to wait and parse the response to obtain

the transaction ID for an element before you reference it in a subsequent request.

The definition of the macro is marked by the defMacro keyword followed by the ID

<InvoiceAdd defMacro="TxnID:1234">

the subsequent use of that macro is marked by the useMacro keyword followed by that

same ID:

<TxnID useMacro="TxnID:1234"></TxnID>

Listing 12-1 shows a complete example.

Must Macro Names be Unique?

Macro names must be unique within the current QuickBooks session: Once the macro has

been defined, it is stored until the session is ended. and are limited to 40 characters. They

can include any alphanumeric character, as well as the dash (-) and underscore (_)

characters.

Each use of defMacro can be associated with only one tagname/name combination. (For

example, you can’t have defMacro="TxnID:1234;TxnLineID:5678.") Be sure to think

about what a given request defines and returns before you define and use the macro

mechanism.

156 Chapter 12: Using Macros In Requests

(c) 2013 Intuit Inc. All rights reserved.

A Sample Macro

Listing 12-1 shows defining a macro for an invoice that is to be added to QuickBooks. The

macro is used to represent the transaction ID that QuickBooks will assign to the invoice

when it creates it. In the same message set, a ReceivePaymentAddRq applies a payment to

the newly created invoice. The macro mechanism allows QuickBooks to substitute the

actual TxnID it creates as a result of the InvoiceAdd request when it encounters the

following instruction later in the message set:

useMacro="TxnID:1234"

_____ Listing 12-1 Defining a macro for an invoice

<QBXMLMsgsRq onError = "stopOnError">

<InvoiceAddRq requestID = "695">

<InvoiceAdd defMacro="TxnID:1234">

<CustomerRef>

<FullName>Jones</FullName>

</CustomerRef>

<TxnDate>2002-08-29</TxnDate>

<RefNumber>123-ABC</RefNumber>

<InvoiceLineAdd>

<ItemRef>

<FullName>Services</FullName>

</ItemRef>

<Desc>For the house</Desc>

<Quantity>1</Quantity>

<Rate>120.00</Rate>

</InvoiceLineAdd>

</InvoiceAdd>

</InvoiceAddRq>

<ReceivePaymentAddRq requestID = "UUIDTYPE">

<ReceivePaymentAdd>

<CustomerRef>

<FullName>Jones</FullName>

</CustomerRef>

<TotalAmount>20.00</TotalAmount>

<AppliedToTxnAdd> >

<TxnID useMacro="TxnID:1234"></TxnID>

<PaymentAmount>20.00</PaymentAmount>

</AppliedToTxnAdd>

</ReceivePaymentAdd>

</ReceivePaymentAddRq>

</QBXMLMsgsRq>

In Listing 12-1, the tagname for the macro is “TxnID” and the name is “1234.”

Where Can You Define a Macro? Use a Macro? 157

(c) 2013 Intuit Inc. All rights reserved.

Where Can You Define a Macro? Use a Macro?

You need to check the OSR for the requests where you want to use macros. Elements in the

request that support defining a macro have the text defMacro in parens next to them (Figure

12-1). Elements supporting the use of a macro have the text useMacro in parens (Figure 12-

2).

Figure 12-1 defMacro in OSR

Figure 12-2 useMacro in OSR

Macros are normally defined (defMacro) for transactions. Macros are normally used

(useMacro) in the following ID elements:

PaymentTxnID

PaymentTxnLineID

TxnID

TxnLineID

The request elements that support macros are listed in the OSR.

Using Macros to Set Cleared Status

Another use of macros is to set the cleared status for an element. A typical use would be to

add a deposit and then set the cleared status for the transaction via the useMacro.

Listing 12-2 shows creating a deposit with cash back to the Savings account. It then clears

both the deposit and the cash back.

158 Chapter 12: Using Macros In Requests

(c) 2013 Intuit Inc. All rights reserved.

_____ Listing 12-2 Using macros to set the cleared status for an element

<DepositAddRq requestID = "695">

<DepositAdd defMacro="TxnID:66">

<TxnDate>2002-09-12</TxnDate>

<DepositToAccountRef>

<FullName>Jones</FullName>

</DepositToAccountRef>

<CashBackInfoAdd defMacro="TxnLineID:33">

<AccountRef>

<FullName>Savings</FullName>

</AccountRef>

<Amount>5.00</Amount>

</CashBackInfoAdd>

<DepositLineAdd>

<EntityRef>

<FullName>Smith</FullName>

</EntityRef>

<AccountRef>

<FullName>other</FullName>

</AccountRef>

<CheckNumber>1986</CheckNumber>

<Amount>20.00</Amount>

</DepositLineAdd>

</DepositAdd>

</DepositAddRq>

<ClearedStatusModRq requestID = "5629">

<ClearedStatusMod>

<TxnID useMacro="TxnID:66"></TxnID>

<ClearedStatus>Cleared</ClearedStatus>

</ClearedStatusMod>

</ClearedStatusModRq>

<ClearedStatusModRq requestID = "8411">

<ClearedStatusMod>

<TxnID useMacro="TxnID:66"></TxnID>

<TxnLineID useMacro="TxnLineID:33">2</TxnLineID>

<ClearedStatus>Cleared</ClearedStatus>

</ClearedStatusMod>

</ClearedStatusModRq>

 159

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 13 1

OBJECTS, OBJECTREFS, FULLNAMES, AND ATTRIBUTES 1

When you program using the SDK, you will be accessing QuickBooks accounts, payments,

credits, vendors, invoices, purchase orders, and so on. In the QuickBooks SDK

documentation, we sometimes call these Quickbooks entities objects. These objects are

categorized either as list objects or transaction objects, as described in the following

subsections. One of the first things you must do in determining how to access some

QuickBooks feature is to determine whether you are dealing with a list or with a

transaction, since the programming required for each of these is different.

NOTE

There are a few miscellaneous objects that are neither lists
nor transactions—namely, company, host, preferences, and
reports. These can be queried.

Lists

QuickBooks uses lists of information that you may want to access. Table 13-1 shows

functional groupings of those lists that are supported by the SDK. The functional groupings

are important because they illustrate certain commonalities within the functional group.

That is, if you know how to use Customer list objects (within the Entity group in Table 13-

1), then using Vendor list objects (which is also an Entity type) will be very similar. So, if

you have sample code for Customers but not Vendors, you can look at the Customer sample

code to see what you must do for Vendors.

NOTE

When you are programming, you normally will have the SDK’s
Onscreen Reference open in order to see how to build the
requests. A quick way to determine whether the object you
are working with is a List object or a transaction object is to
look at the Response message for the object. It will have a
ListID at the beginning of the Ret object. A transaction will
have a TxnID in the beginning of the Ret object.

160 Chapter 13: Objects, ObjectRefs, Fullnames, and Attributes

(c) 2013 Intuit Inc. All rights reserved.

Table 13-1 List Types

Some list objects can have associated sub-objects—for example, a customer can have a

number of jobs associated with the same customer. The relationship between a list object

and its sub-object is described as a parent-child relationship. List objects can have up to

four levels of children.

When you attempt to modify a list object, the attempt can fail if the object is currently

being edited in the QuickBooks UI, or if the object was modified since the time you

retrieved it from QuickBooks in a query. If this failure occurs, you can handle it by

querying QuickBooks to get the object again and then apply the modifications to this

updated copy.

A Note about ListIDs

Notice that you can assign a name to the list object when you create or modify it. However,

only QuickBooks can assign the ListID and that ListID cannot be changed. However, in

some circumstances QuickBooks may appear to cause a ListID change. How? Suppose you

have a customer that has job information, and you attempt to add a job to the customer.

Entity Lists Item Lists

Customer ItemDiscount

Employee ItemFixedAsset

OtherName ItemGroup

Vendor ItemInventory

ItemInventoryAssembly*

Customer and Vendor Profile Lists ItemNonInventory

Currency ItemOtherCharge

CustomerMessage ItemPayment

CustomerType ItemSalesTax

DateDrivenTerms ItemSalesTaxGroup

JobType ItemService

PaymentMethod ItemSubtotal

SalesRep PayrollItemWage

SalesTaxCode PayrollItemNonWage

ShipMethod

StandardTerms Other Lists

VendorType Class

BillingRate**

PriceLevel

Account List Template

Account ToDo

Vehicle

*Premier Edition and above

**Contractor, Professsional Services,
Accountant flavors of Premier and above

161

(c) 2013 Intuit Inc. All rights reserved.

From the QuickBooks UI, you can split the job information stored in the customer record,

which effectively creates a NEW customer record, populates it with the non-job data of the

original customer, and makes the original customer record with job data a child of that new

record. Consequently, because the customer record is new, it will have a new ListID, but

the same name. This will make it seem as though the ListID of that customer has changed.

(The old customer ListID in this example is now referencing the customer job!)

Notice that you can do the same thing from the SDK when you get an error in trying to add

a job to a customer, using the same logic.

Transactions

QuickBooks transactions reflect the flow of money into and out of a business. Table 13-2

lists functional groupings of the QuickBooks transactions that are supported in the SDK.

Although you can assign a reference number to some transactions, QuickBooks always

assigns a transaction ID to a transaction when it is created, and this ID cannot be modified.

Table 13-2 Transaction Objects

Accounts Receivable General Journal

Charge JournalEntry

CreditCardRefund Check

CreditMemo

Invoice

ReceivePayment Bank and Sales Receipt

Check

Accounts Payable Deposit

Bill SalesReceipt

BillPaymentCheck

BillPaymentCreditCard

ItemReceipt Time-Tracking

SalesTaxPaymentCheck TimeTracking

VendorCredit

162 Chapter 13: Objects, ObjectRefs, Fullnames, and Attributes

(c) 2013 Intuit Inc. All rights reserved.

Identifiers

Identifiers are used to refer to list objects and transactions. They are used in elements

within requests and responses and in object references (see the following section). List

objects have two types of identifiers:

• ListID: an ID, assigned by QuickBooks. A ListID does not change and is unique

among list objects of a given type (see details in “ListID,” beginning on page 162).

• FullName: the fully qualified name of the list object, which includes the list object

name preceded by the names of all of its parents (see details in “FullName,” beginning

on page 164). List object names are assigned by the user or by the application.

Transactions also have two types of identifiers:

• TxnID: an ID that is unique across all transactions (regardless of type). A TxnID is

assigned by QuickBooks and does not change.

• RefNumber: an optional user-assigned string that appears in various QuickBooks user

interface forms. Examples are check numbers, invoice numbers, and purchase order

numbers. This string may not be unique, even within the same transaction type.

ListID

A given list ID is unique within each of the groups shown in Table 13-3.

Credit Card Other

CreditCardCharge InventoryAdjustment

CreditCardCredit BuildAssembly (US Premier Edition
and above)

VehicleMileage

Non-posting

Estimate

PurchaseOrder

SalesOrder (US Premier Edition and
above)

Accounts Receivable General Journal

163

(c) 2013 Intuit Inc. All rights reserved.

Table 13-3 Unique IDs for List Groups

For example, a customer list object will never have the same ListID as a vendor list object.

Entity Lists Item Lists

Customer ItemDiscount

Employee ItemFixedAsset

OtherName ItemGroup

Vendor ItemInventory

ItemInventoryAssembly

Terms Lists ItemNonInventory

DateDrivenTerms ItemOtherCharge

StandardTerms ItemPayment

ItemSalesTax

Payroll Item Lists ItemSalesTaxGroup

PayrollItemNonWage ItemService

PayrollItemWage ItemSubtotal

164 Chapter 13: Objects, ObjectRefs, Fullnames, and Attributes

(c) 2013 Intuit Inc. All rights reserved.

The list IDs for objects in these lists need not be unique because each list is separate:

FullName

When a list object is created, a name is assigned to it, either by the user or by the

application. This name can be changed. Some list objects are simple standalone list objects.

Other list objects can have children. Examples of hierarchical list objects are customer/job,

job/subjob, account/subaccount, class/subclass. Table 13-4 contains the complete set of

hierarchical lists.

A FullName is a case-insensitive string that contains the name of an object, prefixed by the

names of each of its ancestors. Each name is delimited by a colon. A FullName can include

up to five object names. An example of a FullName is

Brian Cook:Home:Kitchen:Sink

The maximum length of a FullName depends on the maximum length of the base object

name, according to this formula:

maxlength = maxLengthBaseObjectName x nbrOfNames + nbrOfColons

Account

Class

CustomerMessage

CustomerType

JobType

PaymentMethod

SalesRep

SalesTaxCode

ShipMethod

Template

ToDo

VendorType

165

(c) 2013 Intuit Inc. All rights reserved.

Table 13-4 Hierarchical Lists

About Names

A name is a case-insensitive string that identifies an object. If the object has parents, a

name does not include the name of the parents. Also, if the object does not have parents,

Name is the same as FullName.

Sublevel Number

When a hierarchical object is returned by QuickBooks, the response indicates the sublevel

of the object, which is a number indicating how many parents the object has. The sublevel

is returned in any Add, Modify, and Query response.

Example

Table 13-5 shows a number of transactions for work on various jobs completed for the

customer Kristy Abercrombie.

Table 13-5 Invoices by Customer List

Each full name must be unique. Individual child names, such as “Floor” in this example,

need not be unique, since they are qualified by their parent names.

Account

Class

Customer

CustomerType

ItemDiscount

ItemInventory

ItemNonInventory

ItemOtherCharge

ItemService

JobType

VendorType

FullName Invoice # Description

Kristy Abercrombie Invoice #6 Permits

Kristy Abercrombie:Bathroom Invoice #1 Demolition

Kristy Abercrombie:Bathroom:Floor Invoice #2 Tile

Kristy Abercrombie:Bathroom:Floor Invoice #4 Install

Kristy Abercrombie:Bathroom:Tub Invoice #3 Tub install

Kristy Abercrombie:Bathroom:Sink Invoice #5 Reimbursement

Kristy Abercrombie:Kitchen Invoice #7 General

Kristy Abercrombie:Kitchen:Floor Invoice #8 Tile

166 Chapter 13: Objects, ObjectRefs, Fullnames, and Attributes

(c) 2013 Intuit Inc. All rights reserved.

Suppose you perform a query on the invoices listed in Table 13-5 asking for all invoices

pertaining to

<FullName>Kristy Abercrombie:Bathroom</FullName>

The response will contain Invoice #1. The following list shows other possible invoice

queries you could request for Table 13-5 and the corresponding invoices that would be

returned:

ListID versus FullName

Many messages allow you to specify either the ListID or the FullName for an object.

Because ListIDs cannot be changed, it is always safest to specify the ListID. If you specify

both a ListID and a FullName for an object, QuickBooks looks only at the ListID. The

FullName is completely ignored in this case, even if the ListID cannot be found. (Note:

This behavior applies to all Add and Mod requests.)

For Queries: FullNamewithChildren

FullNameWithChildren is an element used in entity, account, and item filters. For example,

in Table 13-5, if you query invoices for

<FullNameWithChildren>Kristy Abercrombie</FullNameWithChildren>

the response would include information for Kristy Abercrombie as well as the child jobs of

this customer, which in this case would be all of the invoices listed in

Table 13-5, since they are all children of Kristy Abercrombie. Other examples of invoice

queries that specify FullNameWithChildren for items in Table 13-5 would return the

following invoices:

ListID has an analogous element: ListIDWithChildren. ListIDWithChildren includes the

parent object as well as all of its descendants, just as FullNameWithChildren does.

If you perform an invoice query for ...
This invoice is
returned ...

<FullName>Kristy Abercrombie:Bathroom</FullName> Invoice #1

<FullName>Kristy Abercrombie</FullName> Invoice #6

<FullName>Kristy Abercrombie:Bathroom:Sink</FullName> Invoice #5

If you perform an invoice query for ...
This invoice is returned
...

<FullNameWithChildren>Kristy Abercrombie:Bathroom</
FullNameWith Children>

Invoices #1, 2, 3, 4, 5

<FullNameWithChildren>Kristy Abercrombie:Bathroom:Sink</
FullNameWith Children>

Invoice #5

Operations 167

(c) 2013 Intuit Inc. All rights reserved.

Object References

An object reference is used within an object to point to a list object. An object reference

contains a ListID and a FullName. Object references are used for two primary purposes:

• To connect list objects together in hierarchical relationships. These references are called

parent references. Only hierarchical list objects (Table 13-4) can contain parent

references. (Transaction objects cannot have parent references because they are not

hierarchical. Also, note that even if an object is a member of a hierarchical list, it may

not actually have a parent.)

• To refer to another object that contains relevant data. Both transaction objects and list

objects can contain object references.This reference might be for convenience, for

reporting purposes, or because the item is required for basic accounting purposes.

The name of the object reference implies the type of object referred to. For example, a

VendorTypeRef reference refers to a VendorType list object. A SalesRepEntityRef refers to

a SalesRep. An ExpenseAccountRef refers to an account of type Expense, and so on.

In general, if you want to add or modify an object that contains an object reference, the

referenced object must already exist in QuickBooks. However, the referenced object can be

defined in an Add request in the same message set as the referring object. In this case, the

referring object must come after the referenced object, and it must use a FullName as the

reference if the referring object is a list object. (Transaction objects can use either

FullName or macros.) For more information on macros, see Chapter 12, “Using Macros In

Requests.”

About DateTimes

Currently, the epoch is defined as the year 2038. You must specify DateTimes that fall on or

before the epoch, as DateTimes after the epoch are invalid.

Templates

You can query for templates using the TemplateQueryRq to obtain the names of all

templates that have been defined in QuickBooks. Templates are mainly used for specifying

how to print certain transactions. The following transactions can have templates defined for

them: credit memo, estimate, invoice, purchase order, sales order, and sales receipt.

Templates have an important correlation to custom fields: a transaction needs to reference a

customized template that has custom fields turned on in order for a custom field to be

displayed or printed. By default, custom fields are not turned on (and are therefore not

displayed or printed by default either).

Operations

The SDK supports the following operations:

168 Chapter 13: Objects, ObjectRefs, Fullnames, and Attributes

(c) 2013 Intuit Inc. All rights reserved.

• Add - adds an object to QuickBooks

• Modify - modifies an existing QuickBooks object (lists and some transactions)

• Delete - removes the list object or transaction object from QuickBooks

• Void - changes the transaction amount to zero but leaves a record of the transaction in

QuickBooks (does not apply to lists)

• Query - obtains information about one or more objects according to specified criteria

Adding an Object: Example of a Request and Response

The AccountAdd object in Listing 13-1, which adds an account, includes two required

elements (Name and AccountType) and one optional element (BankNumber). For optional

elements that are left unspecified (such as AccountNumber and OpenBalance, in this case)

QuickBooks will assume default values, if defaults exist. Elements that don’t have defaults

are left blank.

_____ Listing 13-1 Add request

<AccountAddRq requestID = "423">

<AccountAdd>

<Name>Checking Account</Name>

<AccountType>Bank</AccountType>

<BankNumber>0350039560</BankNumber>

</AccountAdd>

</AccountAddRq>

The response to an AccountAddRq is named AccountAddRs. The AccountAddRs response

contains an AccountRet object. An AccountRet object is also returned when an account

object is modified (AccountModRq).

After QuickBooks has successfully added the object, it returns a response message

containing the AccountRet object. In this object, QuickBooks adds some elements,

including the ListID, the time the object was created in QuickBooks (TimeCreated), the

time the object was last modified (TimeModified), and a value representing the version of

the object (EditSequence), plus some default values. Listing 13-2 shows the AccountAddRs

sent in response to the AccountAddRq message in Listing 13-1.

Operations 169

(c) 2013 Intuit Inc. All rights reserved.

______Listing 13-2 Add response

<AccountAddRs requestID = "423"

statusCode = "0"

statusSeverity = "Info"

statusMessage = "Status OK">

<AccountRet>

<ListID>60000-933272656</ListID>

<TimeCreated>2001-02-19T13:54:39-08:00</TimeCreated>

<TimeModified>2001-02-19T13:54:39-08:00</TimeModified>

<EditSequence>933272656</</EditSequence>

<Name>Checking Account</Name>

<FullName>Checking Account</FullName>

<IsActive>true</IsActive>

<Sublevel>0</Sublevel>

<AccountType>Bank</AccountType>

<BankNumber>0350039560</BankNumber>

</AccountRet>

</AccountAddRs>

Use of the Request ID

A request can specify an optional request ID, which can be used by your application to

match up requests you send to QuickBooks with the responses it returns to you. This

attribute is returned unchanged from QuickBooks in the matching response. Listing 13-1

specifies the optional ID, and Listing 13-2 returns it. The request ID can be very helpful in

error recovery if you don’t use QBFC. (See Chapter 31, “Error Recovery.”)

Balance vs. TotalBalance

The AccountRet and CustomerRet objects contain two elements, Balance and TotalBalance,

which have different meanings. Balance refers to an amount that applies only to a specific

element. In Table 13-6, for example, the subjobs Floor, Sink, and Bathroom each have

individual balances. TotalBalance is a cumulative total that is the sum of all subjob

balances in a job (or, more generally, of descendants of a given parent object). In Table 13-

6, TotalBalance for Kitchen is $800 ($500 for floor and $300 for sink). The TotalBalance

for KristyAbercrombie is the Kitchen TotalBalance ($800) plus the Bathroom TotalBalance

($400), or $1200.

Table 13-6 Comparison of Balance and TotalBalance

Job Balance TotalBalance

Kristy Abercrombie 0.00 1200.00

Kitchen 0.00 800.00

Floor 500.00 500.00

Sink 300.00 300.00

Bathroom 400.00 400.00

170 Chapter 13: Objects, ObjectRefs, Fullnames, and Attributes

(c) 2013 Intuit Inc. All rights reserved.

Querying for Objects

A query request enables an application to obtain objects of a certain type or group of types

and according to certain criteria from QuickBooks. The SDK defines a Query request for

each type of list object and transaction object. Filters allow you to specify selection criteria

for particular characteristics and parameters of the objects returned.

When a query specifies multiple filters, QuickBooks ANDs the filters and returns all

objects that satisfy the criteria of all the filters specified.

Some query requests have no filters, such as the HostQueryRq, CompanyQueryRq, and

PreferencesQueryRq.

HostQuery Request

The HostQuery request enables your application to obtain from QuickBooks the product

name and version information. (However, if you are primarily interested in supported

version information, and you use QBXMLRP2, then using the QBXMLVersionsForSession

call invoked against the request processor would be a better choice.)

In response, QuickBooks returns a HostRet object containing the following information

(see the Onscreen Reference for details):

• ProductName - This is the name of the product, such as “QuickBooks Pro Edition

2003.”

• MajorVersion - This is the version number identifying a major version of the

product, such as 13 (2004 US and Canadian Pro and above and Enterprise v4).

• MinorVersion - The minor version identifies a specific release of a major version. A

major bug fix or a new feature might be included in a minor version, for instance,

minor version 0 (release 1). Your application may need to check the version to

determine whether a particular feature is supported.

• Country - A string identifying the country for which QuickBooks is built. Possible

values are US (United States), CA (Canada), UK (United Kingdom), and AU

(Australia). Country-specific features include currency, taxes, spelling, and so on.

• SupportedQBXMLVersion - This is a list of all versions of the qbXML

specification that are supported by the version of QuickBooks that is currently serving

requests.

• IsAutomaticLogin - Indicates whether the application has logged in to QuickBooks in

Interactive mode (QuickBooks runs in the foreground and its user interface is

displayed) or in Automatic mode (QuickBooks runs in the background and its user

interface is not displayed).

• QBFileMode - Indicates whether the QuickBooks company file has been opened in

single-user or multi-user mode.

For detailed information on queries and filters, see Chapter 8, “Creating Queries.” For

detailed information on reports, see Chapter 9, “Generating Reports.”

Attributes in the SDK 171

(c) 2013 Intuit Inc. All rights reserved.

Attributes in the SDK

Attributes details are covered in the OSR. This section provides some background for the

OSR discussion.

There are several general types of Attributes that are available:

• message set-level attributes

• request attributes

• response attributes

• query attributes

We’ll describe each of these in the following sections.

Message Set-Level Attributes

There are several attributes related to how QuickBooks responds to errors in processing

requests sent by your application.

These are message set-level attributes governing how the message set is to processed. For

example, the onError attribute specifies how to proceed with subsequent requests in a

message set if an error occurs. The newMessageSetID and oldMessageSetID instruct

QuickBooks to save processing information in its state until you are sure your request and

its response have been successfully processed. The responseData attribute specifies how

much of the response to include.

onError Attribute

Every request message set must include the onError attribute, which specifies how to

proceed when an error occurs:

• stopOnError - directs QuickBooks to process requests until an error occurs and then

stop. Neither the current request that raised the error nor any subsequent requests will

be processed. Any requests in the same message set that were previously processed

successfully are retained. A nonzero status code is returned for the operation that

caused the error condition. For messages in the message set subsequent to the one that

raised the error, status code 3231 (“Status unprocessed”) is returned.

• continueOnError - directs QuickBooks to continue processing requests even if an

error occurs in processing the current request message set.

responseData Attribute

The responseData attribute can have a value of includeAll (the default) or includeNone.

Note that if a response is returned without data, it might be because of an error, or it might

be the result of the setting for this attribute.

172 Chapter 13: Objects, ObjectRefs, Fullnames, and Attributes

(c) 2013 Intuit Inc. All rights reserved.

Attributes for Error Recovery

If your application modifies data in the QuickBooks company file, you need to include the

error recovery attributes in your request messages:

• oldMessageSetID

• newMessageSetID

• messageSetStatusCode (see below)

The messageSetStatusCode attribute will be in the response message if error-recovery

attributes were included in the message set request. It provides the status of the entire

request message that was set in the QBXMLMsgsRq request.

For a complete discussion of the use of the oldMessageSetID and newMessageSetID

attributes and how to implement an error recovery routine in your application, see Chapter

31, “Error Recovery.” These attributes allow you to instruct QuickBooks to save state

concerning processing of the request, to check the processing status of a given request, and

to clear state for a given request when you are sure that you’re finished processing the

response. Also see the error recovery example included with the QuickBooks SDK

Samples.

Request Attributes

For requests that are not queries, there is one optional attribute, requestID. This attribute is

used in requests in message sets where there are more than one request. The request ID

allows you to match up requests and responses (the response to a request will have the same

requestID) when you receive them in the response message set. This is important, because

the order of requests submitted in the request message set might not be the order of

responses coming back in the response message set.

Notice that if you use QBFC, you don’t have to deal with requestIDs. QBFC automatically

assigns the requestID to the requests inside the message set, and guarantees that the order of

responses returned matches the order of the requests submitted.

Response Attributes

Every response contains three types of status information:

• requestID- See above under ‘Request Attributes”

• statusCode - 0 for success; nonzero for information, warnings, and errors.

• statusSeverity - This attribute indicates how severe the error is. It can have one of

three values:

> Info - QuickBooks completed processing your qbXML request and has returned the

corresponding data in the remainder of this message.

Attributes in the SDK 173

(c) 2013 Intuit Inc. All rights reserved.

> Warning - QuickBooks completed processing your request and has returned the

corresponding data, but the results might not be consistent with what you expected.

> Error - The request was not completed. No data will appear in the response after

the status message.

• statusMessage - This attribute explains the error or warning condition that is indicated

by the status code.

Query Attributes

In addition to the general request and response attributes listed above, queries have several

other attributes. These generally are intended to help you manage the amount of query data

returned.

Query Request Attributes

These are attributes found in the query request

• iterator may have one of the following values: Start, Continue, Stop

• iteratorID is optional

• metaData is optional and may have one of the following values: NoMetaData,

MetaDataOnly, MetaDataAndResponseData

Query Response Attributes

• iteratorID is optional

• iteratorRemainingCount

• retCount

For details on the query attributes, see Chapter 8, “Creating Queries.”

174 Chapter 13: Objects, ObjectRefs, Fullnames, and Attributes

(c) 2013 Intuit Inc. All rights reserved.

Using the C# App Template to Implement Eventing 175

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 14 1

EVENT NOTIFICATION 1

This chapter describes the QuickBooks SDK event notification framework and how to use

it in your qbXML-based application to respond to certain QuickBooks events. This chapter

provides general information applicable to both QBFC-based and qbXML-based

applications.

The chapter is divided into two main parts

• An Overview section containing background information about the event notification

framework.

• An Implementation section containing details and sample code.

IMPORTANT

Events are not supported for QuickBooks Simple Start edition.

Using the C# App Template to Implement Eventing

The QB SDK includes an application template wizard that generates a great deal of the

event code you need or may want to implement. It does a lot of the heavy lifting for you

and we strongly recommend using this if you can. The information in this chapter is still

useful background information, but the template will save you LOTS of time and potential

mistakes. The template is for Visual Studio 2005 and later and works for C# applications. If

you have VS 2005, this will be automatically installed for you in the templates directory.

For more information see “C# Project Wizard” in the QB SDK program group accessed

from the Windows Start menu.

What Requests Do I Use and How Do I Invoke These?

The following requests are the event related requests:

Name Description

DataEventSubscriptionAdd Adds one or more subscriptions to the specified QuickBooks data events.

DataEventSubscriptionQuery Queries for subscriptions by SubscriberID and qbXML version.

SubscriptionDel Deletes all subscriptions matching subscriber ID and qbXML version.

UIEventSubscriptionAdd Adds one or more subscriptions to the specified QuickBooks UI events.

UIEventSubscriptionQuery Queries for subscriptions by SubscriberID and qbXML version.

UIExtensionSubscriptionAdd Adds one or more subscriptions to the specified QuickBooks UI extension
events.

UIExtensionSubscriptionQuery Queries for subscriptions by SubscriberID and qbXML version.

176 Chapter 14: Event Notification

(c) 2013 Intuit Inc. All rights reserved.

These requests are documented in the OSR under the pulldown menu “Select Subscription

Message”

Your callback application gets all events in a QBXMLEvents response message.

How Do I Invoke Subscription Events?

You must invoke the requests to add, query, and delete subscriptions using the request

processor method ProcessSubscription() if you use qbXML.

If you use QBFC, you must append the subscription request to an

ISubscriptionMsgSetRequest object instantiated by the QBSessionManager method

CreateSubscriptionMsgSetRequest() and invoke the method DoSubscriptionRequests().

IMPORTANT

You cannot invoke QBXMLEvent, since that is a return-only
message.

Overview: The Event Notification Framework

To obtain a general understanding of how QuickBooks event notification works, you need

to understand the following:

• “QuickBooks Events and Event Notification” (page 176)

• “Subscribing to Events” (page 178)

• “Authorizing a Callback Application to Receive Events” (page 181)

• “Processing Events in a Callback Application” (page 182)

• “Handling Special QuickBooks Operations” (page 189)

• “Putting it All Together: The Event Notification Flow” (page 191)

These items are discussed in the following subsections.

QuickBooks Events and Event Notification

IMPORTANT

The event mechanism described in this chapter applies only to
company files opened in interactive mode under QuickBooks.
No events are sent to applications if QuickBooks auto-login
mode, also called “background” mode, is used. (Auto-login
mode is used where applications access company files without
QuickBooks running.)

Overview: The Event Notification Framework 177

(c) 2013 Intuit Inc. All rights reserved.

An application that is integrated with QuickBooks via the SDK may need to know about

certain changes to data in the company file when they occur. For example, if it uses

QuickBooks customer data or account data, the application may need to know if a customer

or account is added, modified, or deleted. Such changes are called QuickBooks data events,

or simply data events.

Similarly, an application may need to be notified when certain QuickBooks UI-related

events occur, such as the opening or closing of the company file. These are called UI

events.

Finally, an application may need to launch itself or display its user interface (UI) in

response to an end user clicking a customized menu item that the application has added to

the QuickBooks UI. The menu click on a custom menu item is called a UI extension event.

(Adding a custom menu item to QuickBooks is described in Chapter 15, “Integrating with

the QuickBooks UI.”)

Event notification refers to the delivery of event information to an integrated application

when any of the three types of event occurs. See Figure 14-1 (page 177).

Figure 14-1 QuickBooks Events and Event Notification

Which Events are Supported?

Your application can receive notification of certain QuickBooks data events, UI extension

events, and UI events. See the Onscreen Reference for a complete listing of possible events.

Supported Data Events

Any QuickBooks list or transaction object supported by the SDK is also supported by the

event notification framework.

Your application can receive notification about additions, deletions, and modifications to

these types of QuickBooks objects, whether the changes occur directly in the QuickBooks

UI (such as by adding a customer) or programmatically from an integrated application

(such as by sending an InvoiceAdd request).

178 Chapter 14: Event Notification

(c) 2013 Intuit Inc. All rights reserved.

NOTE

Your application receives its own data events unless you
specify otherwise when you subscribe the application. To
avoid receiving your own events, set the DeliverOwnEvents
field to False in the DataEventSubscriptionAdd request.

Supported UI Extension Events

Through UI extension subscriptions, you can add your own custom menu item and/or menu

subitems to the QuickBooks UI. Your application can also receive notification when these

items are clicked by an end user.

Supported UI Events

Company file events, such as the opening or closing of the company file, are considered to

be UI events, and are supported by the event notification framework. Currently, these are

the only two UI events supported.

How qbXML Versioning is Handled in Subscriptions

The event data that is returned can potentially differ depending on the qbXML version. For

example, in the 4.0 qbXML spec, there is a new tag that could be returned in the

QBXMLEvent response called CurrentWindow. If an application is designed for the 3.0

spec but not the 4.0 spec, how is this situation handled?

Beginning with SDK 4.0, the spec version that issued the original subscription request

determines which data is returned in the response. For example, if your application

subscribed using qbXML 3.0 (that is, the qbXML processing instruction is set like this:

<?qbxml version="3.0"?>), then the QBXMLEvent data that is returned is the data from

3.0, that is, you don’t receive additional data made available in 4.0. If you needed that data,

you would first do a 3.0 unsubscribe to get rid of the old subscription, then resubscribe

using a qbXML 4.0 subscription request.

In addition, suppose you have a current subscription issued using qbXML 3.0. To delete

that subscription, you have to issue a SubscriptionDel request with the qbXML version tag

set to 3.0. The reason for this is that you might want to keep 3.0 spec subscriptions for

backwards compatibility.

Subscribing to Events

In order for your application to receive notification about one or more supported

QuickBooks events, the event notification framework must know about the application and

the events that the application wants to receive. That is, your application must be

subscribed to an event before it can receive notification about it.

Once your application is subscribed, your application will receive all the specified events.

For example, if it is subscribed to CustomerAdd events it will receive notifications

whenever a new customer is added in QuickBooks to any company file.

Overview: The Event Notification Framework 179

(c) 2013 Intuit Inc. All rights reserved.

The application receiving the events handles them in a callback, as described later in this

chapter. This application is called the callback application and must be an .exe binary: it

cannot be a DLL.

NOTE

The application that makes a subscription request does not
have to be the same application that will receive the event
notification. (For example, your installation application might
call a subscription request that specifies callback information
for your main application.)

When Does a Subscription Go into Effect?

QuickBooks does not need to be running when you subscribe and unsubscribe an

application. Notice that the subscribe or unsubscribe does not go into effect immediately,

however. For data and UI events, the subscribe/unsubscribe goes into effect when the

company file is next opened by QuickBooks. (Consequently, when you subscribe or

unsubscribe, you should notify the user to reopen any company files that are currently

open.) For UI extension events, the subscribe/unsubscribe goes into effect when

QuickBooks is next started.

Which Company Files are Affected by a Subscription?

When you add a subscription, it applies to all company files on that machine. However,

notice that the QuickBooks user must still authorize your application for each company file.

If you want events from only one particular company file, you can filter out the events from

any unwanted company file by checking the CompanyFilePath element in the incoming

event XML that your application receives.

What Information Do I Need to Write Subscription Code?

The actual subscription code differs depending on whether you use qbXML or QBFC to

accomplish it. Implementing qbXML-based subscription is described later in this chapter

under “Implementing Event-Awareness in qbXML.”

You need to supply the following information in your subscriber application:

180 Chapter 14: Event Notification

(c) 2013 Intuit Inc. All rights reserved.

Unsubscribing From Events

Both QBFC and qbXML support unsubscribing from events of a specified type: data

events, UI events or UI extension events. The unsubscribe request specifies the type and the

application. For example, if you unsubscribe from data events, the application is

unsubscribed from all data events, if you unsubscribe from UI events, the application is

Information Description

Callback application name The name of the application that contains the
callback that handles the events.

CLSID (or ProgID) You must assign a CLSID (or a ProgID, depending on
the programming language that you use and your
own preferences) for the callback class that
implements the SDK interface IQBEventCallback.
The CLSID or ProgID must be registered in the
Windows registry before the subscription request can
be made successfully.

Notice that you can only have one CLSID/ProgID per
SubscriberID. For example, if you use the same
SubscriberID to subscribe to data event, UI event,
and UI extension events, then you will also need to
specify the same CLSID.

If you want multiple CLSIDs for your application
(perhaps because you want one EXE to handle data
events, another EXE to handling UI events, and still
another EXE to handle UI extension events), you use
a different SubscriberID to subscribe to each event
type.

DeliveryPolicy You need to specify the QBFC or qbXML value for
“deliver only if running” if you want your application
to receive events only when it is running.

Specify the QBFC or qbXML value for “deliver
always” if you want your application to be started up
to receive the incoming events if the application isn’t
running. Notice that the callback will be started up
only once during the QuickBooks session.

The actual values specified vary depending on
whether QBFC or qbXML is used.

subscriberID This is a GUID that you must create for your
application. You also use this value whenever you
query or delete subscriptions.

TrackLostEvents For data events only. Specify the QBFC or qbXML
value for “all” if you want a DataEventRecoveryTime
to be recorded when there is a lost event. You would
do this if you wanted to implement lost event
recovery, as described under “Recovering From Lost
Data Events” (page 187).

Specify the QBFC or qbXML value for “none” if your
application does not care about lost events.

Overview: The Event Notification Framework 181

(c) 2013 Intuit Inc. All rights reserved.

unsubscribed from all UI events, and so on. Just like subscribing, the unsubscribe changes

take effect only when the company file is next opened (for data events and UI events) or

when QuickBooks is restarted (for UI extension events).

IMPORTANT

During your application’s uninstall, you should always
unsubscribe from any events to which your application is
subscribed.

Modifying a Subscription

There is no subscription Modify functionality. However, you can achieve the same result by

deleting the subscription and adding a new subscription that contains all of the events of

that type you want to receive, including ones that may have been in the previous

subscription.

Querying a Subscription

Both QBFC and qbXML support querying for the events that are currently under

subscription. This is useful for determining the current subscription. The response returns

different information depending on the query type. See the Onscreen Reference for more

information.

Authorizing a Callback Application to Receive Events

The QuickBooks UI to authorize an application to receive data, UI, and UI extension events

is the same as for regular SDK calls. Notice that the QuickBooks UI prompts for

permissions based on the callback’s certificate if it is signed or the AppName specified in

the subscription XML if the callback is not signed.

Once an application is authorized to access QuickBooks via the SDK, the application

automatically has permission to receive event notifications. Similarly, once an application is

authorized to receive events, it is automatically authorized to access QuickBooks via the

SDK.

However, there is one difference worth noting. With standard SDK requests, when the user

has chosen to be prompted before allowing access, a prompt will be displayed at each call

to BeginSession. With events, when this same access level is chosen, a prompt will also be

displayed each time the company file is opened in attended mode. Then, if the user grants

the application permission by selecting "Yes, Always," the application will receive events

in future sessions without prompting. If the user selects "Yes, This time,” the application

will receive events for as long as that company file remains open. If the user selects “Yes,

Always,” the application will not be prompted in future sessions. In your documentation

and messaging to your user, you should recommend that they choose “Yes, Always” as this

will provide the best user experience.

182 Chapter 14: Event Notification

(c) 2013 Intuit Inc. All rights reserved.

If the company file is opened in unattended mode, a prompt will not be displayed and no

events will be sent to the application while that company file remains open.

Security and Certification

If your application is digitally signed as described in Chapter 34, “Digitally Signing Your

Code,” QuickBooks verifies that the correct application is receiving the notification to

which your application is subscribed.

QuickBooks reads, encrypts, and stores the certificate information from the callback

executable when the subscription request is made. Then, starting the callback application,

QuickBooks reads the signature information from the callback executable that is about to be

notified and makes sure that it matches the information that was read when the subscription

request was made.

If the certificate is invalid or revoked, QuickBooks silently fails to start the application and

an error is logged because it is considered disruptive to tell the user in the UI (which is

what regular SDK requests do) in this case.

If the certificate is expired, and the user has chosen to be prompted about expired

certificates, QuickBooks will also silently fail to start the application. However, if the user

hasn’t chosen to be prompted about expired certificates, or has previously allowed access to

an application even though it is expired, then the application will continue to receive

events.

If the information does not match (meaning that the executable has been replaced), no

notification will be sent, and for UI extensions an error dialog will be displayed (the same

one that’s shown when the notification fails for any other reason).

If your application is not digitally signed, the SDK will send notification events without any

verification.

Processing Events in a Callback Application

In order to process events, your callback application must implement the required COM

interface and it must account for a range of expected event behavior. (The COM interface is

defined in the file SDKEvent.dll, located in the QuickBooks install directory.) These two

areas are described in more detail in the following subsections.

Importing the Required Libraries

In addition to implementing the callback class, you must import the required event library

into the project that implements the callback.

For Visual Basic you import the library by adding the QBSDKEvents type library to the

project references. To do this, select Project > References from within your VB project.

Find QBSDKEvent 1.0 Type Library in the list and check the box next to it, then click OK.

If you don’t find the entry in the list, you can browse to it.

Overview: The Event Notification Framework 183

(c) 2013 Intuit Inc. All rights reserved.

For Visual C++ you import the library named sdkevent.dll, which is installed in C:\Program

Files\Intuit\<QuickBooksInstallDirectory> where <QuickBooksInstallDirectory> is the

name of the QuickBooks product you are using when you build your application. You need

to add the statement

#import "sdkevent.dll"

in the header file for the callback. Finally, in Microsoft Visual Studio, remember to specify

the QuickBooks executable path for the project. The method for doing this is different for

Visual Studio 6.0 and Visual Studio.NET.

For Visual Studio 6.0, select “Options” from the “Tools” menu. Select the “Directories” tab

and then select “Executable Files.” Add the QuickBooks executable path to the list of

directories here.

For Visual Studio.NET, select “Properties” from the “Project” menu. Under the “C/C++”

options, select “General” and add the QuickBooks executable path to the “Additional

Include Directories.” Under the “MIDL” options, also select “General” and add the

QuickBooks executable path to “Additional Include Directories.”

The IQBEventCallback Class

You need to implement the Inform method (IQBSDKCallback::Inform) of the

IQBEventCallback interface.

The inform method returns the event string in XML format. The following is the virtual

method signature for IQBSDKCallback::Inform:

virtual HRESULT __stdcall inform (/*[in]*/ BSTR eventXML) = 0;

If you use Visual Basic, you need to implement it by adding the lines

Implements QBSDKEVENTLib.IQBEventCallback

Public Sub IQBEventCallback_inform(ByVal eventXML As String)

followed by your implementation code.

Adding the CallBack Class to Your Application

The event notification framework uses COM to notify applications about events.

Accordingly, in order to receive the events you subscribe to, you must implement the SDK-

defined COM interface IQBEventCallback. The implementation is described in detail in

“Implementing a qbXML-based Callback (IQBEventCallback)” (page 196). Notice that you

must register the callback application EXE before any attempt to subscribe the callback

application.

184 Chapter 14: Event Notification

(c) 2013 Intuit Inc. All rights reserved.

IMPORTANT

In-process COM servers are not allowed, only out-of-process
local servers. So, you must implement the callback class in an
EXE, not in a DLL.

Specifying CLSID/ProgID for the Callback Class

In the subscription code you must supply the class ID (CLSID) or ProgID for the callback

class. QuickBooks uses the CLSID/ProgID to invoke your application’s callback method in

response to subscribed events.

In some programming languages you can use the ProgID instead of CLSID. For VB

projects, the ProgID is the ’<Name of Project>.<Name of COM class>.

IMPORTANT

If you use CLSIDs in VB, you must set the VB project
properties for binary compatibility or this value will change
every time you compile and the CLSID won’t match the one
expected by QuickBooks. You must remember to do this
because the VB default for projects does not use binary
compatibility.

To set binary compatibility, open your project, select the
Project pull-down menu, and click on your application’s
properties at the bottom of the pull-down. In the ensuing
properties window, select the Component tab. In the ensuing
tab window, select the option Binary Compatibility and click
OK.

Determine Which Delivery Policy Your CallBack Supports

DeliveryPolicy determines whether QuickBooks will start your callback application when

the application is not running. If your application specifies a delivery policy of “deliver

always” then it will be started up (if not running already) upon the first subscribed

QuickBooks event. If the subscription specifies “deliver only if running” then any events

occurring when the application is not running are not delivered but are marked as “lost

events.”

Regardless of the delivery policy, once your callback application starts, you should be

aware that QuickBooks doesn’t release that callback application’s COM pointer until the

company file closes. The callback application therefore cannot be dismissed by the user. So

if you use a UI for your callback, you need to design the UI to handle this.

If your application needs to distinguish between being started by QuickBooks and being

started by the user, you should add a command line argument to the shortcut for the EXE,

because QuickBooks never passes a command line argument when starting the application.

If your application subscribes with a delivery policy of “deliver only if running,” then you

may want to implement lost event handling, as described in “Recovering From Lost Data

Events” on page 187.

Overview: The Event Notification Framework 185

(c) 2013 Intuit Inc. All rights reserved.

What to Do and What to Avoid in the Callback

Your implementation of the IQBEventCallback routine should do minimal processing and

should return quickly. Why is this a design requirement? First, your callback application

cannot receive any other events until you return from your callback. Instead, QuickBooks

maintains such events (except company file close) in a queue in the order in which they

occur.

Once you return from the callback, QuickBooks will send the next event from this queue. It

is therefore recommended that if the application needs to display some UI in the callback, it

should choose to use nonblocking UI calls instead of blocking UI calls, so that the callback

method can return without delay.

The queue contains a limited number of events. If the queue becomes full, events are no

longer delivered to your application but are marked as lost events. If this is happening, your

application is not processing events fast enough.

NOTE

Even though your application does not receive more events
until it has returned from its callback method, during this time
other applications are free to receive events and QuickBooks
itself is able to function normally. (QuickBooks can handle UI
actions from the user, as well as SDK requests.)

Another reason for performing minimal processing in the callback implementation is that

the callback application must be able to respond quickly to a company file close event.

If your callback makes SDK queries into QuickBooks, rather than caching the Request

Processor pointer, we recommend that you make the BeginSession and EndSession calls

within the callback.

What the Callback Implementation Cannot Do

In your implementation of the IQBEventCallback::Inform callback routine, you cannot

invoke any QuickBooks SDK request that writes immediately to the QuickBooks company

file, if the callback is a data event callback. As a result, you can only issue query requests,

as well as make subscription changes, since they aren’t immediately written to the company

file. The only exception to this is that you can also perform a DataEventRecoveryInfoDel

request during a callback. See “Recovering From Lost Data Events” (page 187) for

information on data event recovery.

Also, in a data event callback, you cannot invoke the QuickBooks UI, that is, post some

QuickBooks form.

Finally, you should not make SDK requests in the callback for company close events.

186 Chapter 14: Event Notification

(c) 2013 Intuit Inc. All rights reserved.

Avoiding Infinite Loops

As noted above, an application is prevented from making data modifying requests in its

callback routine. This is done to help avoid the infinite recursion problem, for example,

where applications A and B each modify data in its callback that the other listens to, thus

becoming locked in an infinite recursion.

Consequently, as much as possible, you should avoid writing to QuickBooks in direct

response to events.

For ideas on how to work with these concerns, see the three sample set under

QBSDK3.0\samples\qbdt\vb\qbxml\DataEvents.

Event Behavior Your CallBack Application Should Be Aware Of

The following subsections describe some event behaviors that you should be aware of when

you implement the callback application.

Can the User Dismiss the Callback Application?

QuickBooks doesn’t release a callback application’s COM pointer until the company file

closes. Consequently, if the callback application has a UI that can be dismissed by the user,

you should be aware that the callback app doesn’t really go away. It goes away only when

the company file closes. If you use a UI for your callback, you need to design the UI to

handle this.

Do Applications Receive Events from Their Own Requests?

Beginning with SDK 4.0, an application can choose not to receive its own data events when

it makes its subscription. By default, however, applications do receive subscribed-to events

for QuickBooks activity resulting from the application’s own add/mod/delete activities

within QuickBooks. To avoid receiving your own events, set the DeliverOwnEvents field to

False in the DataEventSubscriptionAdd request.

Indirect Events

You should be aware that some QuickBooks actions may generate multiple events if the

action affects different QuickBooks objects. For example, adding a new invoice in

QuickBooks also affects accounts. Accordingly, when there is an InvoiceAdd event, there

could be multiple AccountMod events.

Are Events Generated from Custom Fields and Private Data Extensions?

If an end user adds or changes data in a custom field via the QuickBooks UI, or if an

integrated application successfully issues a DataExtAdd or DataExtMod request for a

custom field or private data extension, a Mod event is generated for the parent object, and

the Time Modified value for the parent object is updated. For example, if a Customer has a

custom field called “shoe size,” modifying the value of that custom field generates a

Customer mod event and causes an update to the customer’s Time Modified field.

Can Applications Receive Events From Remote Machines?

An application running on one machine with QuickBooks generally receives events only

from events generated by that local QuickBooks. The application won’t receive events

generated by interactive users sharing the same company file on other machines or by SDK

Overview: The Event Notification Framework 187

(c) 2013 Intuit Inc. All rights reserved.

clients running on other machines. If you need to track those remotely-made changes in the

company file, you can can use the event recovery mechanism described under “Recovering

From Lost Data Events” on page 187.

However, you should be aware that if the local QuickBooks needs to refresh its view of an

object, because it is being edited locally, or because a list is being refreshed, or because an

SDK client issues a query request, then events may be delivered that came from other

machines.

What Kind of Information is Contained in an Event?

When a subscribed event occurs, your application’s callback routine receives the event in

the form of a qbXML aggregate, QBXMLEvents, which contains one of three aggregates

based on the type of event that occurred: DataEventRet, UIExtensionRet, and UIEventRet.

Regardless of event type, the path to the company file is always supplied. The rest of the

data varies by type:

• UI extension events also include the menu tag you specified in the original subscription

in order to identify the specific custom menu item that was selected

• UI events also include

> an indicator that tells whether the file event is a company file open or close

> an indicator that tells whether the company file just opened is a new company file

• Data events also include

> a last restore timestamp if a restore has occurred and this is the first event sent to

your application after the company file was opened

> a last condense timestamp if a condense has occurred and this is the first event sent

to your application after the company file was opened

> a data recovery timestamp if there have been lost events and TrackLostEvents is set

to All in the subscription.

> the object type, e.g., Account, Customer, JobType, Estimate, Invoice, and so on

> the operation causing the event (Add, Modify, Delete, or Merge)

> the object ID (ListID or TxnID)

> the reference number (for transactions)

See the Onscreen Reference for a complete listing of the possible contents of the

QBXMLEvents aggregate.

Recovering From Lost Data Events

There are a few situations in which data events aren’t sent to your application by

QuickBooks. When this happens, the event notification framework provides a way for you

to recover from these lost data events in order to synchronize the data your application

maintains with the data in QuickBooks.

188 Chapter 14: Event Notification

(c) 2013 Intuit Inc. All rights reserved.

How Are Data Events Lost?

Data events can be lost due to a variety of conditions. There are basically two groups of

causes: normal conditions and failure conditions. This distinction is important because the

event notification system behaves differently depending on whether an event was lost due

to failure conditions or not. If data events are lost due to normal conditions, attempts will

still be made to deliver future events. If events are lost due to failure conditions, no attempt

will be made to deliver future events during the rest of the current session with the

company file.

Normal conditions leading to lost events. The list below describes normal conditions in

which data events are lost for your application:

• Your application does not have access to events at the present time. This can occur

when the user denies such access.

• QuickBooks is being run in unattended mode.

• The application has subscribed as DeliverOnlyIfRunning and it isn’t running

• A data event occurs to which your application has subscribed, but your application is

on a different machine from the machine triggering the data event. The following two

scenarios illustrate how this can happen:

> The data event subscription of application A on machine A has taken effect in a

company file. (A subscription takes effect in a company file upon company file

open.) That company file is then accessed on machine B, which doesn’t have

application A. When a data event that application A subscribed to gets triggered on

machine B (by user action, for example), application A is considered to have lost

that event.

> Application A resides on machine A and application B resides on machine B.

Machine A and machine B are accessing the same company file at the same time in

QuickBooks multi-user mode, and both applications have taken effect in that

company file. When a data event gets triggered on machine A, application B is

considered to have lost that event. Similarly, when a data event is triggered on

machine B, application A is considered to have lost that event.

> Notice that the same application could be installed on both machines in the two

scenarios above, in which case application A and application B would be referring

to two different instances of the same application. Lost events are really tracked for

each unique machine/SubscriberID pair.

• The application is processing events too slowly so that the event queue maintained by

QuickBooks for your application exceeds the queue limit.

• The QuickBooks company file is closed while there are still events in the queue it

maintains for your application.

Failure conditions leading to lost data events. The list below describes failure conditions

in which data events are lost for your application:

• QuickBooks encounters an error when attempting to send the event to your application,

for example, if your application crashed, or if a failure HRESULT is returned from your

callback.

Overview: The Event Notification Framework 189

(c) 2013 Intuit Inc. All rights reserved.

IMPORTANT

If data events are lost due to failure conditions, no more data
events are sent to the application until the company file is re-
opened.

How Do I Determine Whether Any Data Events Have Been Lost?

Provided that you set the TrackLostEvents field in the data event subscription request to

All, the DataEventRecoveryTime will be recorded whenever data events are lost, as

described above. There are then two ways to check the DataEventRecoveryTime to

determine if any events have been lost.

The first way is by examining a data event for the presence of the DataEventRecoveryTime

field. If this field exists, then a data event was lost as of this time. The other way is by

issuing a DataEventRecoveryInfoQuery request. If the response contains a

DataEventRecoveryTime, then, again, a data event was lost as of this time.

Notice that if more than one event was lost, the DataEventRecoveryTime will retain the

time of the first lost event.

How Do I Recover From Lost Data Events?

After you determine that data events have in fact been lost, you can query for all the objects

your application cares about, with the FromModifiedDate filter set to the

DataEventRecoveryTime. This will synchronize your records with the QuickBooks

company file and account for any data events that were lost after the specified time.

Once you have done this, you must then clear the DataEventRecoveryTime using the

DataEventRecoveryInfoDel request, specifying your application’s SubscriberID. By

resetting this time, you are then guaranteed that any future existence of the

DataEventRecoveryTime will indicate that data events have been lost from which your

application has yet to recover.

Handling Special QuickBooks Operations

There are special QuickBooks operations that affect an application’s subscriptions and data

synchronization with QuickBooks. They are listed below:

• Restore

• Condense

• Merge

Each of these is described in more detail in the following subsections.

Restore

After a company file goes through a restore, its application permission records (the

information in the Preferences > Integrated Applications window) may not be current

anymore; there may be applications whose permission records weren’t in the backup file

190 Chapter 14: Event Notification

(c) 2013 Intuit Inc. All rights reserved.

that the company file restored to. Upon opening the company file after the restore

operation, QuickBooks will prompt the user to grant permission for those applications that

still have subscriptions so that they can keep receiving events after the user grants them

permission again.

Any application that has data that needs to match what is currently in QuickBooks will need

to resynchronize its data with QuickBooks after a restore. The LastRestoreTime in the

company file is updated every time a restore happens. An application can use this

timestamp to detect that a restore happened by saving this time when it first sees it and then

comparing it with the one currently stored by QuickBooks. To get the current

LastRestoreTime, an application can issue a CompanyActivityQuery request. Alternatively,

the last restore timestamp is also included in an application’s first data event after a

company file is opened, so that an application doesn’t need to make a separate query

request. Notice that an application only needs to check this timestamp once while a

company file is open, as a restore always involves closing and then reopening the company

file.

Condense

No events are sent during the condense operation of a company file. Any application that

has data that needs to match what is currently in QuickBooks will need to detect when a

condense has happened and then synchronize any data changes after the condense

operation.

After the application detects a condense, it can get all the data changes as a result of

condense by using LastCondenseTime as a filter in the queries (the FromModifiedDate and

FromDeletedDate). A condense operation also always involves closing and then reopening

the company file.

Merge

A list object in QuickBooks can be merged with another list object of the same type. After

the merge operation, all transactions that reference the merged-from object will be changed

to reference the merged-to object, and the merged-from object is deleted. For example, after

the user merges object A to object B, all transactions that used to refer to object A will now

refer to object B, and object A will be deleted.

An application can expect to get a merge event and a delete event during a merge operation,

but it will not get any transaction modify events. For example, in the above scenario, an

application will get a merge event on object A (containing the after-merge list ID, which is

object B’s list ID) and a delete event on object A. However, the application is expected to

walk its own transaction list and update any references to object A itself.

Implementing Event-Awareness in qbXML 191

(c) 2013 Intuit Inc. All rights reserved.

Putting it All Together: The Event Notification Flow

Figure 14-2 (page 191) shows the overall flow within the event notification framework.

Figure 14-2 Event Notification Flow Between Application and QuickBooks

Implementing Event-Awareness in qbXML

This section describes implementation details for qbXML-based applications. In addition,

the syntax and code samples shown are in Visual Basic. If you are programming in Visual

C++, see the fully commented code samples located at the QBSDK install subdirectory

\samples\qbdt\cpp\qbxml\UIandEventTest.

IMPORTANT

If you have used previous versions of the SDK, you may have
used the Request Processor named QBXMLRPLib. Starting
with SDK 3.0, a new Request Processor is available,
QBXMLRP2Lib.RequestProcessor2. Only this new Request
Processor supports event subscription and other new features
of SDK 3.0. Backwards compatibility with the old Request
Processor is maintained in the new one.

To enable your application to receive and respond to QuickBooks events, you need to

subscribe the application to the events and you need to handle those incoming events in

your callback code. This section describes each of these coding activities.

Subscribing, Unsubscribing, and Querying Subscriptions in qbXML

Subscribing, unsubscribing, and querying for subscription data are performed via the

Request Processor ProcessSubscription method call. (In Visual Basic,

QBXMLRP2Lib.RequestProcessor2::ProcessSubscription.)

192 Chapter 14: Event Notification

(c) 2013 Intuit Inc. All rights reserved.

This method call takes a qbXML request string containing the desired subscription,

subscription delete, or subscription query qbXML.

Performing a Subscription in qbXML

In order to subscribe an application to events, a qbXML-based application creates an

instance of the Request Processor, connects to QuickBooks, builds the desired

SubscriptionAddRq request, and makes a call to the method ProcessSubscription

(QBXMLRP2Lib.RequestProcessor2::ProcessSubscription).

When you build the qbXML SubscriptionAdd request you use one of the following

requests, depending on the type of subscription you are making:

• DataEventSubscriptionAddRq (for data events)

• UIExtensionSubscriptionAddRq (for UI extension events)

• UIEventSubscriptionAddRq (for UI events)

For the full description of each of these subscription messages, see the Onscreen Reference.

Building the Subscription Add Request in Visual Basic

The following sample is from a more fully commented sample in the SDK called

QBDataEventSubscriber, which is located at the SDK installation subdirectory

\samples\qbdt\vb\qbxml\DataEvents\QBDataEventSubscriber. (Notice that sample does not

check for errors or exceptions.) The main items to take away from the sample are:

• The initial setup where the Request Processor is created and the connection to

QuickBooks is made (notice there is no QuickBooks session started: not needed or

recommended for subscribing or unsubscribing because subscriptions apply to all

company files).

• The building of the data event subscription add request (not so much the DOM parser

code but more the actual tags and values that are used).

• The building of the UI event subscription add request to QuickBooks.

IMPORTANT

If an application attempts to subscribe before deleting its
current subscription, it will generate an error. Your application
must check for the error and act accordingly.

Implementing Event-Awareness in qbXML 193

(c) 2013 Intuit Inc. All rights reserved.

Private Sub SubscribeBtn_Click()

' Subscribe to events...

Dim ConnOpen As Integer

ConnOpen = 0

' Get the RequestProcessor and open a connection.

Dim RP As New QBXMLRP2Lib.RequestProcessor2

RP.OpenConnection "", "DataEventSample"

ConnOpen = 1

' Create the outer subscription request XML "envelope"

Dim doc As New DOMDocument40

Dim QBXML As IXMLDOMElement

Set QBXML = doc.createElement("QBXML")

doc.appendChild QBXML

Dim SubReq As IXMLDOMElement

' For subscription we use a QBXMLSubscriptionMsgsRq, not a QBXMLMsgsRq

Set SubReq = doc.createElement("QBXMLSubscriptionMsgsRq")

QBXML.appendChild SubReq

' Create the Data Event subscription for customer changes

Dim DataSubReq As IXMLDOMElement

Set DataSubReq = doc.createElement("DataEventSubscriptionAddRq")

SubReq.appendChild DataSubReq

Dim DataSubAdd As IXMLDOMElement

Set DataSubAdd = doc.createElement("DataEventSubscriptionAdd")

DataSubReq.appendChild DataSubAdd

' Remember to generate your own GUID for the SubscriberID

AddSimpleElement doc, DataSubAdd, "SubscriberID",

"{2B6C9DB4-EBE2-45E7-A14F-4E1C49C965F7}"

' Specify the Callback app

Dim COMCallback As IXMLDOMElement

Set COMCallback = doc.createElement("COMCallbackInfo")

DataSubAdd.appendChild COMCallback

AddSimpleElement doc, COMCallback, "AppName", "DataEventSample"

' Supply the ProgID; more convenient than CLSID in VB

AddSimpleElement doc, COMCallback, "ProgID",

"QBDataEventManager.QBEventHandler"

' We chose to specify delivery policy DeliverAlways

AddSimpleElement doc, DataSubAdd, "DeliveryPolicy", "DeliverAlways"

' Tell QuickBooks what events we want: ListEvents that affect Customer

' (add, modify, delete, and merge).

Dim ListEventSub As IXMLDOMElement

Set ListEventSub = doc.createElement("ListEventSubscription")

DataSubAdd.appendChild ListEventSub

AddSimpleElement doc, ListEventSub, "ListEventType", "Customer"

AddSimpleElement doc, ListEventSub, "ListEventOperation", "Add"

AddSimpleElement doc, ListEventSub, "ListEventOperation", "Modify"

AddSimpleElement doc, ListEventSub, "ListEventOperation", "Delete"

AddSimpleElement doc, ListEventSub, "ListEventOperation", "Merge"

194 Chapter 14: Event Notification

(c) 2013 Intuit Inc. All rights reserved.

'we're all done we are going to subscribe to the UIEvents for company

'otherwise QuickBooks won't be able to close

Dim UISubReq As IXMLDOMElement

Set UISubReq = doc.createElement("UIEventSubscriptionAddRq")

SubReq.appendChild UISubReq

Dim UISubAdd As IXMLDOMElement

Set UISubAdd = doc.createElement("UIEventSubscriptionAdd")

UISubReq.appendChild UISubAdd

AddSimpleElement doc, UISubAdd, "SubscriberID",

"{2B6C9DB4-EBE2-45E7-A14F-4E1C49C965F7}"

' Same Callback info as for DataEvents, and same delivery policy

Set COMCallback = doc.createElement("COMCallbackInfo")

UISubAdd.appendChild COMCallback

AddSimpleElement doc, COMCallback, "AppName", "DataEventSample"

AddSimpleElement doc, COMCallback, "ProgID",

"QBDataEventManager.QBEventHandler"

AddSimpleElement doc, UISubAdd, "DeliveryPolicy", "DeliverAlways"

Dim UIEventSub As IXMLDOMElement

Set UIEventSub = doc.createElement("CompanyFileEventSubscription")

UISubAdd.appendChild UIEventSub

' We care only about the Close event, not the open event.

AddSimpleElement doc, UIEventSub, "CompanyFileEventOperation", "Close"

'Send the subscription request to QuickBooks

Dim subXML As String

subXML = "<?xml version=""1.0""?>" & vbCrLf & "<?qbxml version=""3.0""?>"

& vbCrLf & doc.xml

saveXMLStream subXML

Dim resp As String

resp = RP.ProcessSubscription(subXML)

' We'll just show the response.

MsgBox Prompt:=resp, Title:="Subscribe Complete"

' And finally close our connection to QuickBooks

If (ConnOpen) Then

RP.CloseConnection

End If

End Sub

Unsubscribing in qbXML

When you no longer want to receive events of a certain type, or want to change a

subscription, you make a call to the same method used to start receiving the events in the

first place, QBXMLRP2Lib.RequestProcessor2::ProcessSubscription, but instead of

supplying a SubscriptionAdd request, you provide a SubscriptionDel request. This deletes

all subscription information for your application’s SubscriberID for the type of events you

specify (data, UI extension, or UI).

Notice that you cannot unsubscribe from a subset of the original subscription of any type

using the SubscriptionDel request. This request deletes all subscriptions of the specified

type for the application that invokes it.

Implementing Event-Awareness in qbXML 195

(c) 2013 Intuit Inc. All rights reserved.

When you build the qbXML SubscriptionDelRq request you use one of the following

requests, depending on the type of subscription you are making:

• DataEventSubscriptionDelRq (for data events)

• UIExtensionSubscriptionDelRq (for UI extension events)

• UIEventSubscriptionDelRq (for UI events)

For the full description of each of these subscription messages,see the Onscreen Reference.

Building the Subscription Delete Request in Visual Basic

The following sample is from a more fully commented sample in the SDK called

QBDataEventSubscriber, which is located at the QBSDK subdirectory

\samples\qbdt\vb\qbxml\DataEvents\QBDataEventSubscriber. The main items to take away

from the sample are:

• The initial setup where the Request Processor is created and the connection to the

company file is made (notice there is no QuickBooks session started: not needed or

recommended for subscribing or unsubscribing).

• The building of the data event subscription delete request (not so much the DOM parser

code but more the actual tags and values that are used).

• The building of the UI event subscription delete request to the company file. Notice

that the UI close event is unsubscribed along with the data event unsubscribe.

Private Sub Unsubscribe_Click()

'Simply delete the subscriptions we set up in Subscribe_click

Dim ConnOpen As Integer

ConnOpen = 0

Dim RP As New QBXMLRP2Lib.RequestProcessor2

RP.OpenConnection "", "DataEventSample"

ConnOpen = 1

' Create the outer subscription request XML "envelope"

Dim doc As New DOMDocument40

Dim QBXML As IXMLDOMElement

Set QBXML = doc.createElement("QBXML")

doc.appendChild QBXML

Dim SubReq As IXMLDOMElement

Set SubReq = doc.createElement("QBXMLSubscriptionMsgsRq")

QBXML.appendChild SubReq

' Create a subscription delete request for the Data event subscription

Dim DataSubDel As IXMLDOMElement

Set DataSubDel = doc.createElement("SubscriptionDelRq")

SubReq.appendChild DataSubDel

AddSimpleElement doc, DataSubDel, "SubscriberID", "

{2B6C9DB4-EBE2-45E7-A14F-4E1C49C965F7}"

AddSimpleElement doc, DataSubDel, "SubscriptionType", "Data"

196 Chapter 14: Event Notification

(c) 2013 Intuit Inc. All rights reserved.

'Create subscription delete request for the UIEvent for company close

Dim UISubDel As IXMLDOMElement

Set UISubDel = doc.createElement("SubscriptionDelRq")

SubReq.appendChild UISubDel

AddSimpleElement doc, UISubDel, "SubscriberID",

"{2B6C9DB4-EBE2-45E7-A14F-4E1C49C965F7}"

AddSimpleElement doc, UISubDel, "SubscriptionType", "UI"

'Send the subscription delete requests to QuickBooks

Dim subXML As String

subXML = "<?xml version=""1.0""?>" & vbCrLf & "<?qbxml version=""3.0""?>"

& vbCrLf & doc.xml

saveXMLStream subXML

Dim resp As String

resp = RP.ProcessSubscription(subXML)

' Show the response

MsgBox Prompt:=resp, Title:="Subscriptions Removed"

' Close the connection to QuickBooks.

If (ConnOpen) Then

RP.CloseConnection

End If

End Sub

Implementing a qbXML-based Callback (IQBEventCallback)

The callback that handles the incoming QuickBooks events must be an implementation of

the SDK-defined callback interface, IQBEventCallback. This callback accepts the event

XML string sent by QuickBooks and does whatever handling is desired. The best way to

handle events is to hand them off to another application for queuing and processing.

Other than the Implements statement and the required input parameter, there are no

restrictions on your callback other than the ones mentioned in “What to Do and What to

Avoid in the Callback” (page 185).

Sample Visual Basic CallBack Implementation

The following sample is from a more fully commented sample in the SDK called

QBDataEventSubscriber, which is located at the QBSDK subdirectory

\samples\qbdt\vb\qbxml\DataEvents\QBDataEventManager. The main items to take away

from the sample are:

• The Implements statement and the signature of the subroutine that implements the

callback.

• The initial check to determine whether the event is a company file close event. This

must be handled quickly and quasi-preemptively.

• The immediate hand-off of the eventXML to another application queue where it can be

handled at leisure. This way, the queue event limit built into the event notification

framework will never be hit.

Implementing Event-Awareness in qbXML 197

(c) 2013 Intuit Inc. All rights reserved.

Implements QBSDKEVENTLib.IQBEventCallback

Public Sub IQBEventCallback_inform(ByVal eventXML As String)

' You should treat this like interrupt handling in an OS, where

' you process the interrupt (event) as quickly as possible

' Display the event we got

Dim tmpXML As String

tmpXML = eventXML

EventCounter = EventCounter + 1

QBDataEventManagerDisplay.eventXML.Text =

Replace(tmpXML, vbLf, vbCrLf, 1, -1, vbTextCompare)

QBDataEventManagerDisplay.eventLabel.Caption =

"Received Event #" & EventCounter

QBDataEventManagerDisplay.Show

SetForegroundWindow QBDataEventManagerDisplay.hwnd

'Now check if it is a company close event or a data event

If (InStr(1, eventXML, "CompanyFileEventOperation>Close<", vbTextCompare)

> 0) Then

'Company close, shut ourselves down

QBDataEventManagerDisplay.Hide

Unload QBDataEventManagerDisplay

End If

'queue it up if we are supposed to be tracking events.

If (QBDataEventManagerDisplay.Tracking) Then

QBDataEventManagerDisplay.Debug.Text = "Queing event #" & EventCounter

QBDataEventManagerDisplay.EventQueue.EnQueue (eventXML)

End If

End Sub

198 Chapter 14: Event Notification

(c) 2013 Intuit Inc. All rights reserved.

Using the C# App Template to Implement UI Events 199

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 15 1

INTEGRATING WITH THE QUICKBOOKS UI 1

This chapter describes how to integrate your application with the QuickBooks UI.

IMPORTANT

Events are not supported for QuickBooks Simple Start edition.

Using the C# App Template to Implement UI Events

The QB SDK includes an application template wizard that generates a great deal of the

event code you need or may want to implement. It does a lot of the heavy lifting for you

and we strongly recommend using this if you can. The information in this chapter is still

useful background information, but the template will save you LOTS of time and potential

mistakes. The template is for Visual Studio 2005 and later and works for C# applications. If

you have VS 2005, this will be automatically installed for you in the templates directory.

For more information see “C# Project Wizard” in the QB SDK program group accessed

from the Windows Start menu.

What Types of Integrations Can I Do?

You can programmatically interact with the QuickBooks user interface (UI) in these ways:

• Menu extensions and menu event notification

Your application can add a single menu item, with subitems, to a top-level QuickBooks

menu. Also, your application has some control over whether or not your menu

extensions are visible. Starting with SDK 4.0, your application can get context data,

namely which QuickBooks form was open when your menu item was clicked. See

“Getting QuickBooks Context Information From a Menu Item Click” (page 211). Your

application will be notified when an end user selects one of your menu items.

• UI invocation

Your application can open certain QuickBooks transaction windows, list windows, and

reports to present them to the end user. Starting with SDK 4.0, your application can

prefill certain transaction creation forms with customer, vendor, employee, or

OtherName data. See “Error Handling” (page 211).

• UI-event notification

Your application can request notification from QuickBooks about a few UI events, such

as the company file opening or closing. For more information about this, see Chapter

14, “Event Notification.”

200 Chapter 15: Integrating with the QuickBooks UI

(c) 2013 Intuit Inc. All rights reserved.

Canadian Edition and UK Editions of QuickBooks

For important information about adding UI extensions to Canadian editions of QuickBooks,

see “Canadian, UK, and U.S. Applications” on page 200.

Local vs. Remote Support

Menu extensions and menu-extension event notification cannot be used remotely, only

locally. For more information, see “Adding a Menu Item to QuickBooks.”

UI invocation works locally or remotely. For more information, see “Error Handling” (page

211).

Before Your Application Can Extend the QuickBooks UI

Before your menu extensions will appear in QuickBooks and return event notifications,

your application must send subscription information to QuickBooks, QuickBooks must be

restarted, and the QuickBooks administrator must grant access.

Subscription

To subscribe to UI events, either to receive notification of your own menu item being

selected or to receive notification about other UI events (such as the company file opening

and closing), your application must send a subscription request to QuickBooks. Your

application can do this during its installation or as part of its “QuickBooks setup”

functionality. (QuickBooks does not have to be running when the subscription is sent.)

A single subscription applies to all QuickBooks data files on a machine and to all

installations of QuickBooks on a machine (except QuickBooks Basic). For more details

about how to subscribe to events, see Chapter 14, “Event Notification.”

TIP

If you certify your application, the SDK can verify that a
malicious application has not replaced the callback application
specified in your subscription requests.

To see the syntax of what you would include in a UI subscription (contained in a

UIExtensionSubscriptionAddRq message), look up the UIExtensionSubscriptionAdd

message in the Onscreen Reference.

Canadian, UK, and U.S. Applications

If you have several versions of your application, for example, one for Canadian, one for UK

and one for U.S. editions of QuickBooks, note these important limitations:

• It is possible that a user who selects your UI extension from within a Canadian or UK

edition of QuickBooks will be taken to the U.S. version of your application, and vice

versa. You cannot create a subscription on one machine such that a UI item added to

U.S. editions of QuickBooks will invoke the U.S. version of your application while that

same UI item in Canadian editions of QuickBooks will invoke the Canadian version of

Before Your Application Can Extend the QuickBooks UI 201

(c) 2013 Intuit Inc. All rights reserved.

your application. Instead, each version of the application will overwrite any existing

subscription, so that the last one installed “wins.”

• If you have a U.S.-only application, you cannot prevent your UI items from showing up

in Canadian or UK editions of QuickBooks. Conversely, if you have a Canada or UK-

only application, you cannot have a UI item that only shows up in Canadian or UK

editions of QuickBooks. UI extensions show up in all editions of QuickBooks.

Authorization

As with QuickBooks data events, the QuickBooks UI is not accessible until the

QuickBooks administrator grants permission. Access applies to all types of SDK access, so

the administrator cannot give UI access without giving data access, for example.

NOTE

Access permission will carry over when the QuickBooks user
upgrades to a newer version of QuickBooks. Permission will
also carry over to installations that are separate from the
current installation, for example, if the QuickBooks user puts
a QuickBooks upgrade in a different directory or installs a
different type of QuickBooks, such as the Contractor Edition.

Authorization Scenarios Affecting UI Extensions

Table 15-1 shows what will happen in various situations when an end user starts

QuickBooks and selects a QuickBooks data file to open after you have added a UI-

extension subscription.

202 Chapter 15: Integrating with the QuickBooks UI

(c) 2013 Intuit Inc. All rights reserved.

Table 15-1 What happens when a QuickBooks user opens a data file

Figure 15-1 shows this information as a flow chart.

Situation Data File Behavior

The QuickBooks administrator
previously granted your application
access.

The data file will open with your
UI extensions.

The administrator previously granted
your application access, but has
since revoked access.

The data file will open without
your UI extensions.

The administrator did not previously
grant access, or the administrator
granted access but has since
removed your application from the
data file.

• If the user is the QuickBooks
administrator, the authorization
dialog box will appear. If the
administrator grants access, the
data file will open with your UI
extensions showing.

• If the user is not the
QuickBooks administrator, or if
the user is the QuickBooks
administrator but he or she
denies access to your
application, the data file will
open without your UI extensions
showing.

end user opens QuickBooks on a
machine where

• your application is not installed, or

• your application did not add the
UI subscription, or

• the administrator has not granted
access.

Your UI extensions will not be
available. For example, an
accountant with an accountant’s
copy of the data file would not see
your application’s menu items.

Before Your Application Can Extend the QuickBooks UI 203

(c) 2013 Intuit Inc. All rights reserved.

Figure 15-1 What happens when an end user opens a data file

QuickBooks will only prompt the QuickBooks administrator once, as long as he or she

clicks “No” or “Yes, Always” when the authorization dialog box appears. If the

administrator clicks “Yes, This Time,” the prompt will come up again the next time the data

file is opened.

The effects of UI subscription changes that your application makes while QuickBooks is

running will not appear until QuickBooks is restarted.

204 Chapter 15: Integrating with the QuickBooks UI

(c) 2013 Intuit Inc. All rights reserved.

UI Guidelines

The QuickBooks UI adheres to certain guidelines, and we recommend that your UI

extensions follow these guidelines as well. The more closely aligned your UI extensions are

with the QuickBooks look and feel, the better your end users’ experience will be.

Menu-Extension Guidelines

General Guidelines for Menu Items

• Try to place your menu item in the appropriate QuickBooks top-level menu. (See

“Choosing the Right QuickBooks Menu,” below.)

• If the machine will attempt to connect to the Internet when a user selects a menu item,

it’s a good idea to name the item in a way that makes that clear. (For example, if

selecting help will connect the user to your web site, you might name that subitem

“View Online Help” rather than just “View Help.”)

Naming Menu Items

• Menu-item names should be as short as possible.

• If a menu item opens a dialog box or form within your application, it’s a good idea to

have the QuickBooks menu-item name match the resulting window title or the title of

the front pane or tab.

• Try to begin the name of each subitem with a verb. For example:

> Launch Invoice Manager

> Show Invoice List

• Using an ellipsis (...) after a menu-item name lets users know that they will have to

complete some extra step before the command is carried out.

Choosing the Right QuickBooks Menu

Think about how a menu extension will fit with the existing menu structure, and how a user

will perceive it when it appears among the other QuickBooks menu items. In general, the

QuickBooks top-level menus (those that accept menu extensions) serve the following

purposes:

• File menu commands move data into or out of QuickBooks, interact with external files,

and operate on the file in its entirety. For example, if your application imported and

exported data to and from QuickBooks, your menu extension would fit well under the

File menu.

• The Company, Customers, Vendors, Employees, and Banking menus correspond to the

activities and information shown in the QuickBooks Navigators. For example, if your

application managed sales tax or inventory, your menu extension would fit well under

the Vendors menu.

UI Guidelines 205

(c) 2013 Intuit Inc. All rights reserved.

Avoid Using “Separators”

In QuickBooks, separators divide some menus into functional sections. If you have

subitems under your main menu item, we recommend that you not include separators, for

the following reasons:

• In QuickBooks, a separator shows as a single line that spans the width of the menu. The

SDK does not support the creation of separators that would look like this, because a

MenuText element cannot include HTML or graphics.

• QuickBooks separators are impossible to select, whereas a user could select whatever

characters you used to create your separator.

If you can’t organize your submenu without creating a separator, we recommend that you

follow these guidelines:

• Nothing should happen if an end user selects your separator.

• Avoid using words in a separator.

• If separators don’t make it easier for users to find what they’re looking for, consider

leaving them out.

206 Chapter 15: Integrating with the QuickBooks UI

(c) 2013 Intuit Inc. All rights reserved.

Adding a Menu Item to QuickBooks

Your application can add one (and only one) menu item to one (and only one) of these top-

level QuickBooks menus:

• File menu

• Company menu

• Customers menu

• Vendors menu

• Employees menu

• Banking menu

The added menu item can include subitems, but not nested submenus. You can specify

optional display conditions that determine when your menu items will appear (visible/

invisible) and when they will be grayed out (enabled/disabled). (See “Display Conditions”

on page 209.) If you don’t specify display conditions, all of your menu items will show up

as specified.

Your application’s name will appear in a predesignated place on the menu, usually at the

bottom. (See “Where Your Menu Item Will Appear,” below.) If your menu item has

subitems, you can name these in whatever way is appropriate, but the top-level QuickBooks

menu will always show your application’s name. (See “Menu Item Names” on page 207.)

When an end user selects your menu item (or one of your subitems), QuickBooks will

notify your application. At that point, your application might launch itself and display a UI,

update certain QuickBooks data, or invoke a QuickBooks window.

UI extensions and UI event notification are “per machine”—that is, UI extensions show up

and UI events are sent only on the machine where your application is installed. To make

your UI event notification and UI extensions available on multiple machines:

• Your application must be installed on each machine, and

• The QuickBooks administrator must grant access on each machine, for each data file.

Where Your Menu Item Will Appear

Menu extensions have assigned locations in QuickBooks menus. Table 15-2 shows where

QuickBooks will place menu extensions in those menu that allows extensions.

Adding a Menu Item to QuickBooks 207

(c) 2013 Intuit Inc. All rights reserved.

Table 15-2 Position of menu extensions in QuickBooks menus

For example, Figure 15-2 shows where menu extensions are positioned in the QuickBooks

Vendors menu.

Figure 15-2 Where menu extensions appear in the QuickBooks Vendors menu

Menu Item Names

Subscription add requests require an AppName, which has a maximum of 128 characters.

The AppName string will appear as the name of your application in the authorization dialog

box and in the QuickBooks menu.

How AppName is used with the MenuText depends on whether you add a single menu item

(see “A Single Menu Item,” below) or a submenu (see “A Menu Item with Subitems,”

below). The MenuText field is used for menu-item names. Menu-item names:

Menu Position

File Between "Shipping" and "Update QuickBooks" (as shown in Figure
15-3, Figure 15-4, and Figure 15-5)

Company Between "Synchronize Contacts" and "Company Services"

Customers Between "Billing Solutions" and "Check Credit"

Vendors Between "Item List" and "Vendor Services" (as shown in Figure 15-
2)

Employees Between "Payroll Item List" and "Employer Services"

Banking Between "Memorized Transaction List" and "Banking Services"

208 Chapter 15: Integrating with the QuickBooks UI

(c) 2013 Intuit Inc. All rights reserved.

• Cannot have keyboard shortcuts or access keys (mnemonics) set for them

• Cannot have functional check boxes, radio buttons, or other graphics next to them

• Can have up to 50 characters

• Can use special characters

A Single Menu Item

If you add a single menu item, its name (MenuText) follows your AppName, separated by a

colon. Figure 15-3 shows how it would look if an application named “ACME Invoice

Management System” added a menu item called “Export Invoice” to the QuickBooks File

menu.

Figure 15-3 Single menu item with combined AppName and MenuText of fewer than
50 characters

If the AppName and MenuText strings add up to more than 50 characters, the menu-item

name will appear as a subitem, as Figure 15-4 shows. (The colon and the following space

are not counted toward the 50 characters.)

Figure 15-4 Single menu item with combined AppName and MenuText of more than 50
characters

A Menu Item with Subitems

An SDK-added menu item can have as many subitems as your application needs. In this

case, your AppName and a right arrow will appear in the top-level QuickBooks menu.

Figure 15-5 shows an example of how this could look.

Adding a Menu Item to QuickBooks 209

(c) 2013 Intuit Inc. All rights reserved.

Figure 15-5 A menu item with subitems

NOTE

The subitems (specified as a list of MenuItem objects) show
up in the order in which you specify them in the Submenu
object. For more information, see the
UIExtensionSubscriptionAdd message in the Onscreen
Reference.

Placing the AppName at Desired Locations in Menu Text

You can specify the application name to be displayed at various places in the menu text by

using the the value {AppName} in the menu text. This will cause the app name to be placed

as defined by the text. For example:

- Some text {AppName}

- {AppName} some text

- Some text {AppName} more text

- {AppName} (if all you want to show is the application name

Notice that the value {AppName} is a literal string. You don’t replace it with some other

value: you have to use {AppName} within curly braces.

When Several Applications Add to the Same Menu

If some other application adds a menu item to the same top-level menu as your application,

the applications will be listed in alphabetical order according to the first ten letters of the

application name. If two application names share the first ten characters, they will be

ordered randomly.

Display Conditions

Your application has some control over whether your menu extension is visible and

enabled, depending on certain conditions being true or false within QuickBooks. Display

conditions are contained in lists (VisibleIf, VisibleIfNot, EnabledIf, and EnabledIfNot)

within the DisplayCondition object.

The following display conditions are available:

210 Chapter 15: Integrating with the QuickBooks UI

(c) 2013 Intuit Inc. All rights reserved.

• HasCustomers (Do any customers, active or inactive, exist in the data file?)

• HasVendors (Do any vendors, active or inactive, exist in the data file?)

• MultiUserMode (Is this data file open in multi-user mode?)

• AccountantCopyExists (Has an Accountant’s Copy been created for this data file?)

• IsAccountantCopy (Is this data file the Accountant’s Copy?)

• InventoryEnabled, ClassesEnabled, PriceLevelsEnabled , EstimatesEnabled,

SalesTaxEnabled, TimeTrackingEnabled, PayrollEnabled (Does this data file use

inventory, classes, price levels, and so on? The end user enables or disables these in the

Preferences dialog box.)

• SalesOrdersEnabled, AssemblyItemsEnabled (Does this data file use sales orders?

Assembly items? If this is a Premier or Enterprise edition of QuickBooks, the end user

enables or disables these in the Preferences dialog box. If it is a Pro edition of

QuickBooks, sales orders and assembly items are not available.)

Visible and Enabled States

In the DisplayCondition aggregate:

• The VisibleIf and VisibleIfNot tags control whether or not a menu item is displayed.

• The EnabledIf and EnabledIfNot tags control whether or not a menu item is grayed out.

You can combine visible and enabled states. When multiple criteria for a state are given, all

criteria must be true for the state to be “on.” For example, if VisibleIf were set to

HasCustomers and HasVendors, the data file would have to have both customers and

vendors for the menu item to be visible.

All combinations are valid, but not all combinations make sense within QuickBooks. For

example, you could have a menu item that in some cases is not visible, in other cases is

visible but grayed out, and in yet other cases is both visible and enabled. (An item must be

visible to be enabled, of course.) So if you use visible and enabled conditions on the same

item, you must make sure that both conditions can be true at the same time.

IMPORTANT

A menu item does not change its state based on the states of
its subitems. The worst case of this would be if all the
subitems ended up not visible. In this case, the menu item
would still be visible, but there would be no subitems under it
(and therefore it would not have any functionality).

You can avoid this problem by including an always-visible
“Learn About” or “Help” link that provides information about
the conditions that will make the other menu items visible.

Error Handling 211

(c) 2013 Intuit Inc. All rights reserved.

When to Use Visible and Enabled Conditions

To avoid cluttering an end user’s menu with items that will never be used, try to match

display conditions with whatever user Preferences are set. For example, in a QuickBooks

data file that had the time-tracking preference turned off, you would not want a time-

tracking submenu item to show up.

Getting QuickBooks Context Information From a Menu Item Click

If you are subscribed to UIExtensionEvents, and the user clicks on your subscribed menu

item, the CurrentWindow element in the QBXMLEvent delivered to your callback contains

the name of the QuickBooks form (if any) that was open when the user clicked the menu

item.

Error Handling

This section describes error-handling situations specific to UI extensions. (For information

about QuickBooks SDK error handling in general, see the section on error recovery section

in Chapter 31, “Error Recovery.”)

Sometimes QuickBooks end users will not receive a response (or will not realize that they

have received a response) after they select your menu item. With careful planning, you can

prevent the following three scenarios (each of which is a bad experience for the end user):

1. Your application window comes up behind the QuickBooks window when the end user

selects your menu item.

2. Your application does something behind the scenes, without informing the end user

what’s going on.

3. The end user uninstalls your application from the machine, but your uninstall process

does not unregister its UI extensions, so your menu extensions still show up in

QuickBooks. (To unregister itself, your application must send a SubscriptionDelRq

request message to QuickBooks. For details about the syntax of this message, see the

SubscriptionDel message in the Onscreen Reference.)

The following three scenarios are outside your control, but knowing about them will help

you to plan your application’s response:

1. Someone deletes your application from the machine without uninstalling it.

2. Someone uninstalls your application while QuickBooks is running, and your

application correctly unregisters itself (as described in 3, above). But because

QuickBooks has not yet been restarted, your menu items still appear (and can still be

selected).

3. The notification process fails for some other reason (for example, the machine or an

application is frozen).

When a QuickBooks user selects a menu extension and there is no response for one of the

three reasons listed above, QuickBooks will put up a message box similar to the one shown

in Figure 15-6.

212 Chapter 15: Integrating with the QuickBooks UI

(c) 2013 Intuit Inc. All rights reserved.

Figure 15-6 A message box like this one will appear if the user clicks a menu item and
application notification fails for any of the three reasons listed above.

A menu click might also fail because your application is still responding to the last menu-

click. In this case, the error message shown above would not show up. For more

information about what would happen, see “Lost UI Events” (page 212).

When the Authorization Level Changes

If the QuickBooks administrator uses the Integrated Applications Preferences page to

remove your application or disallow access, the menus will update right away. (The

Integrated Applications Preferences page is described in Chapter 4, “Specifying

Authorization Preferences.”)

Lost UI Events

If your application is unable to receive a UI or UI-extension event, the event is lost and

cannot be recovered. Your application will not even know that it missed an event.

For example, when a user clicks one of your menu items, subsequent clicks will not send

any more notifications until your callback method returns. The user can keep clicking your

application’s menu items (the QuickBooks UI does not prevent it by freezing), but nothing

will happen. These user menu-clicks are lost. Menu item clicks will also be lost if the

callback application is in the process of handling a data event callback.

Lost data events can be detected and recovered. For more information about this, see

Chapter 14, “Event Notification.”

TIP

Your application should return as quickly as possible, without
waiting for UI interaction within your application.

Invoking the QuickBooks UI 213

(c) 2013 Intuit Inc. All rights reserved.

For example, if your application shows a message that the
user must dismiss by clicking OK, your application should not
wait until OK is clicked before returning from the callback.

Invoking the QuickBooks UI

Besides adding menu extensions, your application can interact with the QuickBooks UI by

opening certain QuickBooks windows for the end user. If QuickBooks is already running,

your application can invoke its UI in several ways:

• You can launch a blank transaction form or list window so the QuickBooks user can

create a new transaction or a new list object.

• Starting with SDK 4.0, you can launch various types of transaction window with a new

transaction prefilled with customer, vendor, employee, or OtherName data.

• You can launch an existing transaction form or list window so the user can edit it.

• You can display any of the reports that can be queried through the SDK.

Your application can invoke the QuickBooks UI either locally or remotely. On the end

user’s machine, QuickBooks will return to full size if it was minimized, come to the

foreground, and open the windows you have invoked. Invoked windows appear within the

QuickBooks UI, not within your application.

In general, permissions and preferences affect UI invocation the same way they affect the

QuickBooks UI itself. For example, if Jeff doesn’t have permission to open an Invoice form

in QuickBooks, your application cannot open an Invoice form while Jeff is using

QuickBooks.

Opening Transaction Forms

Your application can use the TxnDisplayAdd request or the TxnDisplayMod request to

open any of the following transaction forms in the QuickBooks UI:

Bill Invoice

Bill payment Item receipt

BuildAssembly

Charge Journal entry

Check Purchase order

Credit card charge Receive payment

Credit card credit Sales order

Credit memo Sales receipt

Deposit Sales tax payment check

Estimate Vendor credit

Inventory adjustment

214 Chapter 15: Integrating with the QuickBooks UI

(c) 2013 Intuit Inc. All rights reserved.

Use TxnDisplayAdd to open a blank form, which you specify with the

TxnDisplayAddType. Use TxnDisplayMod to open an existing transaction form so the user

can modify it. You must specify the TxnID of the transaction to be modified.

NOTE

The SalesTaxPaymentCheck form is modal. Therefore, if a
sales-tax payment form is already open and your application
tries to open another sales-tax payment form, your
application will receive an error indicating that QuickBooks is
locked in a modal state and cannot be accessed (HRESULT
0x80040414).

In some cases, the end user will have to take an extra step to view the right form after your

application invokes a transaction form. This is because in the QuickBooks UI, some

transaction types share forms:

• CreditCardCharge and CreditCardCredit use the same form. If a CreditCardCharge

form is open and you send an add request to open a new CreditCardCredit form,

QuickBooks will open a new CreditCardCharge form instead.

Similarly, if a CreditCardCredit form is open, invoking a new CreditCardCharge brings

up a new CreditCardCredit form.

• ItemReceipt, Bill, and VendorCredit use the same form. So, for example, if a Bill form

is open and you send an add request to open a new ItemReceipt form, QuickBooks will

open a new Bill form instead.

The user can get to the needed form by selecting a radio button or check box. For example,

the difference between CreditCardCharge and CreditCardCredit is a single radio button

that’s either Charge or Credit, the difference between Bill and VendorCredit is a single

radio button that’s either Bill or Credit, and the difference between Bill and ItemReceipt is

a check box that says “Bill Received.”

Opening and Prefilling a New Transaction

Your application can use the EntityRef aggregate (new in SDK 4.0) in the TxnDisplayAdd

request to open and prefill any of the following transaction forms in the QuickBooks UI:

• Bill

• BuildAssembly

• Check

• Credit card charge

• Credit card credit

• Credit memo

• Deposit

• Estimate

• Invoice

• Item receipt

Invoking the QuickBooks UI 215

(c) 2013 Intuit Inc. All rights reserved.

• Purchase order

• Receive payment

• Sales order

• Sales receipt

• Vendor credit

The EntityRef aggregate refers to a customer, vendor, employee or OtherName; the

aggregate contains either the ListID or the FullName. Notice that the prefilling that is

performed is exactly the same as if the end user had typed in a name in that form. That is,

the name will appear, but not the rest of the data for that name, for example the address.

That will be done automatically in QuickBooks once the end user tabs out of the form,

which mirrors the behavior within the QuickBooks UI.

NOTE

If you supply an entity that is not supported by the
transaction, for example, if you specify a vendor name for an
invoice form, the SDK does not return any error. Instead,
when the user tabs out of the transaction form, QuickBooks
will display an error, just as if the user had typed in the
invalid name.

If you supply an EntityRef for an unsupported transaction type, an error is returned in the

response to the TxnDisplayAdd.

Opening List Windows

Your application can use the ListDisplayAdd request or the ListDisplayMod request to open

any of the following list windows in the QuickBooks UI:

• Account

• Customer

• Employee

• Item

• Other Name

• Vendor

Use ListDisplayAdd to open a blank window, which you specify with the

ListDisplayAddType. Use ListDisplayMod to open an existing list window so the user can

modify it. You must specify the ListID of the list object to be modified.

Sometimes the list window you are trying to invoke will not open:

• Job and Customer use the same form, so if the user is viewing the Edit Job form when

your application invokes a new Customer form, the New Job form will open instead. It

is not possible to show a New Customer form if a Job form is already up. However, if

the user is viewing the Edit Customer form when you invoke a new Customer, a new

(blank) Customer form will open.

216 Chapter 15: Integrating with the QuickBooks UI

(c) 2013 Intuit Inc. All rights reserved.

Displaying Reports

To display a report, set the DisplayReport BOOLEAN value to true in the related report

query request. (DisplayReport is false by default.)

If you want the request to display the report without returning any data to your application,

set the responseData attribute to includeNone, for example:

<QBXMLMsgsRq onError = "continueOnError" responseData = "includeNone">

Displaying the report to the QuickBooks user without having data returned to your

application can cut down significantly on the time needed to process the query.

Core Concepts for Receive Payment and Bill Payment 217

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 16 1

HANDLING RECEIVE PAYMENT, BILL PAYMENT, AND DEPOSIT
TRANSACTIONS 1

This chapter describes the basic concepts related to receive payment and bill payment

transactions in QuickBooks. Because these transactions are somewhat more complex than

most other transactions, this chapter provides detailed examples of how payments, credits,

and discounts are handled in different scenarios. The chapter also includes with information

and examples related to deposits.

The following objects are discussed here:

• ReceivePaymentAdd/Mod and the return (Ret) object

• BillPaymentCheckAdd/Mod and the return (Ret) object

• BillPaymentCreditCardAdd and the return(Ret) object.

• DepositAdd//Mod and the Ret object

• Helper queries: ReceivePaymentToDeposit, BillToPayQuery

Each of the Add/Ret objects has a corresponding query object as well. See the Onscreen

Reference for detailed information on the structure of each object. Also see the

qbxmlops70.xml file for samples of each object.

Core Concepts for Receive Payment and Bill Payment

This section describes concepts that apply to both receive payment and bill payment

transactions. Later sections describe aspects that are unique to each type of transaction.

Shared concepts include the following topics:

• Applying payments, credits, and discounts

• Returned object for AppliedToTxnAdd

• Creating links instead of transactions

Applying Payments, Credits, and Discounts

In QuickBooks, you can use receive payment and bill payment functionality to do three

things separately or in combination:

• Apply a payment

• Set discounts

• Set credits

218 Chapter 16: Handling Receive Payment, Bill Payment, and Deposit Transactions

(c) 2013 Intuit Inc. All rights reserved.

This information is included in the AppliedToTxnAdd aggregate, which is similar, though

not identical, for receive payment and bill payment.

About Payments

In both receive payment and bill payment, you have the option of distributing the payment

among multiple transactions. Receive payment also offers an “auto-apply” feature that

allows QuickBooks to distribute the payment according to a specified algorithm. See

“Applying the Payment “Automatically”” (page 220).

Creating a Credit vs Setting a Credit

It’s important to note the difference between creating a credit and setting a credit. For

example, a credit can be created when a customer returns some merchandise or overpays an

invoice. For bill payment, a credit can be created when the business returns some

merchandise to one of its vendors or overpays a bill. Creating a credit means making a

credit available to be applied in the future to a transaction such as an invoice or bill.

Setting a credit, on the other hand, means using an already existing credit to pay off some

or all of the balance of a receivable or billed transaction. The AppliedToTxnAdd aggregate

includes the SetCredit aggregate, which allows you to apply (or set) an available credit.

Why Applied Credits Can’t be Modified

You can use the SDK to modify certain payment transactions, such as ReceivePaymentMod

and BillPaymentCheckMod. But in those transactions, you cannot modify credits that have

already been applied in the corresponding ReceivePaymentAdd and

BillPaymentCheckAdd. (You can only apply additional credits.) The reason is that

QuickBooks currently has no way of remembering which transactions consumed which

credits. Once the credits are applied, there is no way of unapplying them short of deleting

the transaction (if that is possible) and redoing the transaction with the desired credits.

Linked Transactions

Adding a receive payment or bill payment object generates links between transactions.

Query requests for invoice, credit memo, bill, and bill credit objects contain an

IncludeLinkedTxns flag, which specifies whether to include information about these

links in the response. If this flag is true, a LinkedTxn aggregate is returned for each linked

transaction. If no linked transactions exist, no LinkedTxn aggregates are returned.

If you specify true for this flag in an InvoiceQueryRq, for example, then InvoiceRet

will include a list of all transactions linked to that invoice. This list is similar to the History

view of a transaction in the user interface, but not identical, as the SDK list contains only

linked transactions, not items. By default, the IncludeLinkedTxns flag is false.

Receive Payment Transactions 219

(c) 2013 Intuit Inc. All rights reserved.

Returned Object for AppliedToTxnAdd

The response returned for a receive payment or bill payment object can include either a

“full” version or a “lean” version of the AppliedToTxnRet object. For certain transactions, a

full AppliedToTxnRet object is not required (see “Example: Creating Links Only” and

“Setting a Credit”). The lean version returned in these cases includes only:

• Transaction ID (for the affected transaction)

• Transaction type

To find out exactly what happened, you need to perform the appropriate query on the

returned TxnID.

Creating Links Instead of Transactions

Although receive payment and bill payment are referred to as “transactions,” adding these

objects to QuickBooks does not always result in a transaction. For example, when a credit

is applied in a receive payment or bill payment object and no payment is involved, links are

created, but no transactions are created (see “Example: Creating Links Only” and “Setting a

Credit”).

Receive Payment Transactions

QuickBooks receive payment transactions can be added, queried, and deleted through the

SDK. This section describes the effects of sending a ReceivePaymentAdd request object to

QuickBooks.

Applying a Payment

In a ReceivePaymentAdd object, TotalAmount is optional. TotalAmount represents the total

amount of money that is being received from the customer named in the CustomerRef. The

reason TotalAmount is not required is that a ReceivePaymentAdd object can be used to set

credits or discounts without receiving any payment.

You can use either AppliedToTxnAdd or IsAutoApply to distribute the received payment,

as described in the following sections.

Distributing the Payment Explicitly

You can include one or more instances of AppliedToTxnAdd, which allows you to specify

exactly how to distribute TotalAmount for this customer job. Each instance of

AppliedToTxnAdd refers to a different transaction, assigning a PaymentAmount to each

one. (If you include AppliedToTxnAdd aggregates with duplicate TxnIDs, you will receive

a status code error.)

220 Chapter 16: Handling Receive Payment, Bill Payment, and Deposit Transactions

(c) 2013 Intuit Inc. All rights reserved.

You need to know the transaction ID of each transaction to which payment is applied. In

QuickBooks, the main type of transactions that can receive payment are as follows:

• Invoices

• General journal debits

• Checks (for example, a customer job might receive a payment reimbursing a check that

was written for an expense for that customer job)

• Statement charges

Table 16-1 shows how the sum of the payment amounts relates to the TotalAmount

specified. The sum of the PaymentAmount elements in all the AppliedToTxnAdd

aggregates should be less than or equal to the TotalAmount (in the ReceivePaymentAdd

object).

Table 16-1 How the sum of all payment amounts relates to the TotalAmount specified

Applying the Payment “Automatically”

The IsAutoApply flag is used instead of AppliedToTxnAdd. This flag allows QuickBooks

to apply the payment according to its set of rules, or simply to receive the payment without

applying it to a specific transaction, as follows:

• If IsAutoApply is true, QuickBooks applies TotalAmount according to the following

rules:

> If it finds an outstanding transaction for this customer job that exactly matches

TotalAmount, it applies the payment to that transaction.

> If no exact match is found, the payment is applied to the outstanding transactions

beginning with the oldest one. Within the QuickBooks user interface, you can set

credits or discounts even when you auto-apply a payment, but you cannot do this

through the SDK.

• If IsAutoApply is false, QuickBooks receives the payment but does not apply it to any

outstanding transaction. QuickBooks creates a credit that will appear on the customer

job’s next transaction (not on the current transaction). For example, the

ReceivePaymentAdd request shown in Listing 16-1 will result in a credit of $620.40

being available to the Smith:kitchen customer job account. On the next transaction

involving the Smith:kitchen customer job, at least $620.40 of credit will be available.

(More than $620.40 will be available if this customer job already had a credit.)

Relationship of Payment Amounts to
TotalAmount Result

payment amounts = TotalAmount Entire received amount is distributed

payment amounts < TotalAmount UnusedPayment amount is returned in the

ReceiveAmountRet object and is available

for a future payment transaction

payment amounts > TotalAmount Error!

Receive Payment Transactions 221

(c) 2013 Intuit Inc. All rights reserved.

______Listing 16-1 ReceivePaymentAdd request with IsAutoApply set to false; creating a credit

<ReceivePaymentAddRq requestID="356088">

<ReceivePaymentAdd>

<CustomerRef>

<FullName>Smith:kitchen</FullName>

</CustomerRef>

<ARAccountRef>

<FullName>Accounts Receivable</FullName>

</ARAccountRef>

<TotalAmount>620.40</TotalAmount>

<IsAutoApply>false</IsAutoApply>

</ReceivePaymentAdd>

</ReceivePaymentAddRq>

Setting Discounts

Applying a discount reduces the amount that is to be received from the customer job. The

discount is debited from the account referenced by DiscountAccountRef. In the

QuickBooks user interface you can also apply discounts to statement charges, but you

cannot do this through the SDK.

You can apply a discount to an invoice transaction by including a DiscountAmount in an

AppliedToTxnAdd aggregate. You cannot set a discount if you auto-apply the payment.

Setting Credits

You can set a credit (add credit to a customer job account) by including the SetCredit

aggregate in an AppliedToTxnAdd aggregate. You cannot set a credit if you auto-apply the

payment.

If you set one or more credits in a ReceivePaymentAdd request but do not distribute a

payment or set a discount, then no transaction will be created. Setting a credit merely

creates links between existing transactions (for example, between a credit memo transaction

and an invoice transaction), and no information about these links will be returned to you in

the ReceivePaymentRet response.

The AppliedToTxnRet aggregate included in the returned ReceivePaymentRet object will

not refer directly to any credit that was set. If you want information about credits, you must

do a query on the TxnID returned by AppliedToTxnRet. For example, if AppliedToTxnRet

refers to an invoice with a particular TxnID, if you query that TxnID you can get

information about credit memos that are linked to that transaction.

For more information and an example of setting a credit, see “Example: Creating Links

Only.”

222 Chapter 16: Handling Receive Payment, Bill Payment, and Deposit Transactions

(c) 2013 Intuit Inc. All rights reserved.

Example: Creating Links Only

Listing 16-2 shows a ReceivePaymentAdd object that sets a credit but does not include a

PaymentAmount or DiscountAmount element. This ReceivePaymentAdd object will create

a link between a credit memo and an invoice transaction, but will not create a new

transaction.

The customer named Smith previously returned merchandise, and a credit memo was

created for their account. A CreditMemoQueryRq query returned information about the

amount and transaction ID of this credit memo (110.29 and 120-1012533559).

In Listing 16-2, the full amount from the credit memo is applied to the customer job

Smith:kitchen, and a link is created to the invoice with the TxnID of 24-974954. The

balance of that invoice will be reduced by $110.29, and closed altogether if the previous

balance was $110.29.

_____ Listing 16-2 ReceivePaymentAdd object that creates links but does not create a transaction

<ReceivePaymentAddRq requestID="356089">

<ReceivePaymentAdd>

<CustomerRef>

<FullName>Smith:kitchen</FullName>

</CustomerRef>

<AppliedToTxnAdd>

<TxnID>24-974954</TxnID>

<SetCredit>

<CreditTxnID>120-1012533559</CreditTxnID>

<AppliedAmount>110.29</AppliedAmount>

</SetCredit>

</AppliedToTxnAdd>

</ReceivePaymentAdd>

</ReceivePaymentAddRq>

A ReceivePaymentAdd object that does not create a transaction will return a lean

AppliedToTxnRet aggregate (page 219). For example, Listing 16-3 shows a

ReceivePaymentRet object that could be returned from the ReceivePaymentAdd request

shown in Listing 16-2.

_____ Listing 16-3 ReceivePaymentRet object returned by the ReceivePaymentAddRq shown in Listing 16-2

<ReceivePaymentAddRs> requestID="356089" statusCode="0"

statusSeverity="Info" statusMessage="Status OK">

<ReceivePaymentRet>

<AppliedToTxnRet>

<TxnID>24-974954</TxnID>

<TxnType>Invoice</TxnType>

<TxnDate>2002-02-10</TxnDate>

</AppliedToTxnRet>

</ReceivePaymentRet>

</ReceivePaymentAddRs>

Receive Payment Transactions 223

(c) 2013 Intuit Inc. All rights reserved.

Getting a small response such as this might prompt you to query the specified invoice

further to learn about any linked transactions. For example, after receiving the response

shown in Listing 16-2, you might send an InvoiceQueryRq with TxnID of 24-974954 and

IncludeLinkedTxns set to true. The query would return a LinkedTxn aggregate representing

a credit memo with TxnID of 120-1012533559. For more information, see “Linked

Transactions,” beginning on page 218.

NOTE

You can perform additional queries for links only if the
affected transaction (the transaction returned in the
AppliedToTxnRet) is an invoice. For example, if the
TxnID 24-974954 had a TxnType of JournalEntry, it would not
be possible to query the journal entry to find out about linked
transactions because a JournalEntryQueryRq does not include
an IncludeLinkedTxns flag.

Example: Applying Payment, Credit, and Discount in One Request

Listing 16-4 shows a request that applies a payment, credit, and discount. The invoice with

TxnID 43-222560 has a balance of $100.00, and a payment is received for $100.00. The

invoice will be closed, but there will also be an unused payment, because both a credit (for

$5.00) and a discount (for $7.00) are set. QuickBooks will reduce the internal payment

amount to $88.00 [$100.00 - ($5.00 + $7.00)]. This example will produce an overpayment

of $12.00, so UnusedPayment will be 12.00 in the returned ReceivePaymentRet object.

______Listing 16-4 Applying Payment, Credit, and Discount in a ReceivePaymentAdd Request

<ReceivePaymentAddRq>

<ReceivePaymentAdd>

.

.

.

<TotalAmount>100.00</TotalAmount>

<AppliedToTxnAdd>

<TxnID>43-222560</TxnID>

<PaymentAmount>100.00</PaymentAmount>

<SetCredit>

<CreditTxnID>4552-22629</CreditTxnID>

<AppliedAmount>5.00</AppliedAmount>

</SetCredit>

<DiscountAmount>7.00</DiscountAmount>

<DiscountAccountRef>

<FullName>discount</FullName>

</DiscountAccountRef>

</AppliedToTxnAdd>

</ReceivePaymentAdd>

</ReceivePaymentAddRq>

224 Chapter 16: Handling Receive Payment, Bill Payment, and Deposit Transactions

(c) 2013 Intuit Inc. All rights reserved.

Using ReceivePayment for Credit Card Authorization and Capture

If the company is subscribed to QBMS, you can record a ReceivePaymentAdd that is

basically a pending transaction. That is, in this usage, you want to save a QBMS

authorization transaction into QuickBooks. Thus, the ReceivePaymentAdd contains a

CreditCardTxnInfo aggregate with a CreditCardTxnType of Authorization. QuickBooks

saves this as a pending transaction.

Later, when the authorized charge is captured to become a real charge in QBMS, you can

record that charge into QuickBooks by modifying that ReceivePayment

(ReceivePaymentMod). The ReceivePaymentMod will have a CreditCardTxnInfoMod

containing data from the QBMS capture transaction, with a CreditCardTxnType of Capture.

QuickBooks automatically removes the pending status and records the transaction.

Modifying a ReceivePayment Transaction

Beginning with qbXML specification 6.0 and QuickBooks 2007, you can modify a

ReceivePayment transaction via the SDK. However, notice that you cannot modify applied

credits.

Beginning with qbXML spec 7.0 and QuickBooks 2008, you can modify a ReceivePayment

transaction to add a CreditCardTxnInfo aggregate or modify an existing one if you want.

The most common use of this feature is described under the topic “Using ReceivePayment

for Credit Card Authorization and Capture.” However, you can make other modifications if

you wish because the feature is not limited to an authorization/capture usage.

Bill Payment Transactions

A bill payment transaction is used to pay one or more bills for the same vendor. Payment

can be either by check or by credit card. (Online banking is not currently supported in the

SDK.) In addition, a bill payment transaction, like a receive payment transaction, can be

used to set credits and discounts.

The Pay Bills window in QuickBooks shows all open bills for all vendors. The user can

select multiple bills from multiple vendors and pay them, all at one time. In the SDK, you

can pay multiple bills in one bill payment object, but they must all be from the same

vendor.

Bill Payment Transactions 225

(c) 2013 Intuit Inc. All rights reserved.

Payment Method

There are two types of bill payment objects:

• BillPaymentCheckAdd

• BillPaymentCreditCardAdd

The type of bill payment object created depends on which payment method the user selects.

Paying the Bill

A bill payment is always applied to a particular transaction. The payment amount can be

less than, equal to, or greater than the amount due. In the case of an overpayment, a credit

in the amount of the overpayment is created. This credit appears in the Credits window list.

Special Helper Query

When you pay a bill (using AppliedToTxnAdd), you must specify the transaction ID and

the payment amount. Use the BillToPayQuery to obtain the transaction ID. This query

returns a list of all open bills and credits available.

Example: BillToPayQuery

Listing 16-5 shows an example of a BillToPayQuery request for all bills and credits for

Allison BMW as of August 16, 2002. The corresponding response is shown in Listing 16-6.

It returns information on two bills and one credit.

______Listing 16-5 BillToPayQuery request

<BillToPayQueryRq requestID = "123456">

<PayeeEntityRef>

<FullName>Allison BMW</FullName>

</PayeeEntityRef>

<APAccountRef>

<FullName>Accounts Payable</FullName>

</APAccountRef>

<DueDate>2002-08-16</DueDate>

</BillToPayQueryRq>

226 Chapter 16: Handling Receive Payment, Bill Payment, and Deposit Transactions

(c) 2013 Intuit Inc. All rights reserved.

_____ Listing 16-6 BillToPayQuery response

<BillToPayQueryRs requestID="123456" statusCode="0"

statusSeverity="Info" statusMessage="Status OK">

<BillToPayRet>

<BillToPay>

<TxnID>101-1029260941</TxnID>

<TxnType>Bill</TxnType>

<APAccountRef>

<ListID>280000-1026788471</ListID>

<FullName>Accounts Payable</FullName>

</APAccountRef>

<TxnDate>2002-07-26</TxnDate>

<RefNumber>0126</RefNumber>

<DueDate>2002-08-16</DueDate>

<AmountDue>152.00</AmountDue>

</BillToPay>

</BillToPayRet>

<BillToPayRet>

<BillToPay>

<TxnID>FE-1029260914</TxnID>

<TxnType>Bill</TxnType>

<APAccountRef>

<ListID>280000-1026788471</ListID>

<FullName>Accounts Payable</FullName>

</APAccountRef>

<TxnDate>2002-08-13</TxnDate>

<RefNumber>0125</RefNumber>

<DueDate>2002-07-17</DueDate>

<AmountDue>1250.00</AmountDue>

</BillToPay>

</BillToPayRet>

<BillToPayRet>

<CreditToApply>

<TxnID>104-1029260962</TxnID>

<TxnType>VendorCredit</TxnType>

<APAccountRef>

<ListID>280000-1026788471</ListID>

<FullName>Accounts Payable</FullName>

</APAccountRef>

<TxnDate>2002-08-13</TxnDate>

<RefNumber>0300</RefNumber>

<CreditRemaining>125.00</CreditRemaining>

</CreditToApply>

</BillToPayRet>

</BillToPayQueryRs>

</QBXMLMsgsRs>

</QBXML>

Setting a Credit

If you apply only a credit (and no payment), links are created between the bill and the credit

transaction, but no transaction is actually created. The return object in this case is a “lean”

AppliedToTxnRet object. See “Returned Object for AppliedToTxnAdd” (page 219).

Bill Payment Transactions 227

(c) 2013 Intuit Inc. All rights reserved.

Setting a Discount

You can discount only bills in the BillTxnList. (An attempt to set a discount on other types

of objects results in an error.) If you discount a bill without paying it, only a general journal

entry is created (but no BillPaymentCreditCardRet or BillPaymentCheckRet transaction).

The return object in this case is a lean AppliedToTxnRet object. See “Returned Object for

AppliedToTxnAdd” (page 219).

If you apply both a credit and a discount amount (but no payment), the combined total

cannot exceed the total amount due of the bill.

Bill Payment Examples

Here are a few examples of different bill payment scenarios.

Example: Applying Payment, Credit, and Discount

In this example, the amount due on Bill 1 (B1) is $100. Suppose you pay $80 on Bill 1 and

also apply a credit of $10 and a discount of $10 to the same bill. Listing 16-7 shows the

AppliedToTxnAdd aggregate for this transaction.

______Listing 16-7 Paying and closing a bill

<AppliedToTxnAdd>

<TxnID>B1</TxnID>

<PaymentAmount>80.00</PaymentAmount>

<SetCredit>

<CreditTxnID>C1</CreditTxnID>

<AppliedAmount>10.00</AppliedAmount>

</SetCredit>

<DiscountAmount>10.00</DiscountAmount>

<DiscountAccountRef>

<FullName>D1</FullName>

</DiscountAccountRef>

</AppliedToTxnAdd>

The result is that QuickBooks pays the bill and closes it, because the sum of payments,

credits, and discounts is exactly equal to the amount of the bill.

Example: Overpayment

In this example, the amount due on Bill 1 (B1) is $100. Now suppose you specify a

payment of $80 on Bill 1, apply a $20 credit from Credit 1 on Bill 1 and a discount of $10

also on Bill 1, as shown in Listing 16-8. In this example, the total payment for Bill 1 is

$110. A $10 credit is created as a result of this overpayment.

228 Chapter 16: Handling Receive Payment, Bill Payment, and Deposit Transactions

(c) 2013 Intuit Inc. All rights reserved.

_____ Listing 16-8 Creating a credit as a result of overpaying a bill

<AppliedToTxnAdd>

<TxnID>B1</TxnID>

<PaymentAmount>80.00</PaymentAmount>

<SetCredit>

<CreditTxnID>C1</CreditTxnID>

<AppliedAmount>20.00</AppliedAmount>

</SetCredit>

<DiscountAmount>10.00</DiscountAmount>

<DiscountAccountRef>

<FullName>D1</FullName>

</DiscountAccountRef>

</AppliedToTxnAdd>

Example: Error!

In this example, the following are applied to Bill1, which is for $100 (see Listing 16-9):

• Payment = $50

• Credit = $60

• Discount = $45

This example results in an error, since the combined credits and discounts applied to a bill

cannot exceed the amount due of the bill.

_____ Listing 16-9 Status code error: attempting to apply credits and discounts that exceed the bill amount

<AppliedToTxnAdd>

<TxnID>B1</TxnID>

<PaymentAmount>50.00</PaymentAmount>

<SetCredit>

<CreditTxnID>C1</CreditTxnID>

<AppliedAmount>60.00</AppliedAmount>

</SetCredit>

<DiscountAmount>45.00</DiscountAmount>

<DiscountAccountRef>

<FullName>”GoodCustomerDiscount”</FullName>

</DiscountAccountRef>

</AppliedToTxnAdd>

Modifying a BillPaymentCheck Transaction 229

(c) 2013 Intuit Inc. All rights reserved.

Example: Paying Two Bills

This example, shown in Listing 16-10, applies the following to Bill 1, which has an amount

due of $100:

• Payment = $80

• Credit = $10

• Discount = $10

It also applies a credit of $10 to Bill 2, which has an amount due of $50. (Note that one

credit, C1, is applied to multiple bills in this example.) No payment is applied to Bill 2.

_____Listing 16-10 Paying two bills (generates two AppliedToTxnRet objects)

<BillPaymentCheckAddRq>

<AppliedToTxnAdd>

<TxnID>B1</TxnID>

<PaymentAmount>80.00</PaymentAmount>

<SetCredit>

<CreditTxnID>C1</CreditTxnID>

<AppliedAmount>10.00</AppliedAmount>

</SetCredit>

<DiscountAmount>10.00</DiscountAmount>

<DiscountAccountRef>

<FullName>D1</FullName>

</DiscountAccountRef>

</AppliedToTxnAdd>

 <AppliedToTxnAdd>

<TxnID>B2</TxnID>

<SetCredit>

<CreditTxnID>JulyRebate</CreditTxnID>

</SetCredit>

</AppliedToTxnAdd>

</BillPaymentCheckAddRq>

Two AppliedToTxnRet objects will be returned in the response message—one for Bill 1

and one for Bill 2. The returned object for Bill 1 will be the full AppliedToTxnRet. The

returned object for Bill 2 will be the lean version since no payment was made for Bill 2. To

find out more about Bill 2, you can perform additional queries for links using the

IncludeLinkedTxns flag.

Modifying a BillPaymentCheck Transaction

Beginning with qbXML specification 6.0 and QuickBooks 2007, you can modify

BillPaymentCheck transactions via the SDK. However, you cannot modify any credit that

was applied to a bill either using the bill payment UI or BillPaymentCheckAdd.

230 Chapter 16: Handling Receive Payment, Bill Payment, and Deposit Transactions

(c) 2013 Intuit Inc. All rights reserved.

Deposits

A deposit is used to move funds to an asset account from the Undeposited Funds account,

or to move funds to the same asset account from another asset account. A deposit contains

the following important information:

• Account the funds are coming from

• Account the funds are going to (an asset account)

• Reference to a customer name

You can specify the transfer of deposited funds explicitly to a given account, or you can

specify it using the PaymentTxnID and PaymentTxnLineID elements contained in the

DepositAdd request, as shown by the following examples.

Listing 16-11 is an example of a straightforward DepositAdd request. A total deposit, in the

amount of $50, is taken from customer1’s savings account. A cash back payment ($12) is

taken, and the remainder of the funds ($38) is deposited into the checking account.

____ Listing 16-11 Adding a deposit to the specified account

<DepositAddRq requestID = "SDK deposit 3">

<DepositAdd>

<DepositToAccountRef>

<FullName>checking</FullName>

</DepositToAccountRef>

<Memo>SDK deposit 3</Memo>

<CashBackInfo>

<AccountRef>

<FullName>cash</FullName>

</AccountRef>

<Memo>SDK cash back</Memo>

<Amount>12.00</Amount>

</CashBackInfo>

<DepositLineAdd>

<EntityRef>

<FullName>customer1</FullName>

</EntityRef>

<AccountRef>

<FullName>savings</FullName>

</AccountRef>

<PaymentMethodRef>

<FullName>cash</FullName>

</PaymentMethodRef>

<Amount>50.00</Amount>

</DepositLineAdd>

</DepositAdd>

</DepositAddRq>

Listing 16-12 shows a simple request that issues the helper query

ReceivePaymentToDeposit. The response to this request, shown in Listing 16-13, returns

the IDs of the transactions and lines that are ready to be deposited.

Deposits 231

(c) 2013 Intuit Inc. All rights reserved.

_____Listing 16-12 ReceivePaymentToDeposit helper query request

<QBXMLMsgsRq onError = "continueOnError">

<ReceivePaymentToDepositQueryRq />

</QBXMLMsgsRq>

Listing 16-13 shows the response to the ReceivePaymentToDeposit query. This response

shows that Kristy Abercrombie has paid $200.00 against an invoice, and lists the TxnID

and TxnLineID that the funds are being applied to. The payment received from Kristy

Abercrombie was already included on the original invoice in the form of a payment line

item.

_____Listing 16-13 Response to ReceivePaymentToDeposit query

<ReceivePaymentToDepositQueryRs statusCode="0"

statusSeverity="Info" statusMessage="Status OK">

<ReceivePaymentToDepositRet>

<TxnID>48ED-1071532336</TxnID>

<TxnLineID>48F1-1071532336</TxnLineID>

<TxnType>Invoice</TxnType>

<CustomerRef>

<ListID>170000-933272658</ListID>

<FullName>Abercrombie, Kristy:Kitchen</FullName>

</CustomerRef>

<TxnDate>2003-12-15</TxnDate>

<Amount>200.00</Amount>

</ReceivePaymentToDepositRet>

</ReceivePaymentToDepositQueryRs>

Listing 16-14 shows a DepositAdd request, which feeds the TxnID and TxnLineID

obtained in Listing 16-13 into a deposit. The funds are desposited to the account referred to

by the DepositToAccountRef element in the DepositAdd request—namely, the checking

account.

_____Listing 16-14 DepositAdd request using the obtained data

<DepositAddRq requestID = "101">

<DepositAdd>

<DepositToAccountRef>

<FullName>checking</FullName>

</DepositToAccountRef>

<Memo>SDK deposit 3</Memo>

<DepositLineAdd>

<PaymentTxnID>48ED-1071532336</PaymentTxnID>

<PaymentTxnLineID>48F1-1071532336</PaymentTxnLineID>

</DepositLineAdd>

</DepositAdd>

</DepositAddRq>

An alternative to accomplish the same end would be to issue an InvoiceQuery request. Then

you could look at the InvoiceRet message and extract the TxnID and TxnLineID

information and supply them in the DepositAdd request.

232 Chapter 16: Handling Receive Payment, Bill Payment, and Deposit Transactions

(c) 2013 Intuit Inc. All rights reserved.

TIP

If you use the ReceivePaymentToDeposit query to obtain a
TxnID and TxnLineID, be sure to supply both of these values
to the DepositAdd request (in the PaymentTxnID and
PaymentTxnLineID elements).

Important Note about Querying for Linked Transactions 233

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 17 1

LINKING ITEMRECEIPT/BILL TO PURCHASEORDER, INVOICE TO
SALES ORDER 1

Within the QuickBooks UI, as user can receive items against one or more existing purchase

orders and enter a bill for those received items, with the purchase order being updated

automatically. Similarly, the user can invoice against existing sales orders, with the sales

orders being updated automatically.

These features are also available via the SDK by linking the transactions together, where

ItemReceipt and Bill transactions are linked to existing PurchaseOrder transactions (in the

ItemReceiptAdd and BillAdd requests only). An invoice transaction can be linked to

existing SaleOrder transactions as well, in the InvoiceAdd request. The line item

information is pulled automatically from the PurchaseOrders or SalesOrders, and the

PurchaseOrders or SalesOrders are automatically updated.

This chapter describes the transaction linking between ItemReceipt or Bill and

PurchaseOrder, and between Invoice and SalesOrder. (These are the only transaction links

that are currently supported.) The chapter describes the typical scenario where this feature

is used, the effect on the linked objects, the types of linking you can do, and the rules of

linking that you must follow.

IMPORTANT

In the SDK, linking to the PurchaseOrder is supported only for
the Bill and ItemReceipt Add operations, not for Mod
operations. Likewise, linking to SalesOrder is supported only
for InvoiceAdd, not InvoiceMod.

Important Note about Querying for Linked Transactions

You can find transactions linked to PurchaseOrders and SalesOrders by setting the

IncludeLinkedTxns element to true in the PurchaseOrder or SalesOrder query. (By default,

linked transactions are NOT returned.)

However, notice that the linked transaction as a whole is returned--you get the txnID, but

not any txnLineIDs. This is fine if you linked the whole transaction to your SalesOrder or

PurchaseOrder. But what happens if you linked individual transaction line items to line

items in your SalesOrder or PurchaseOrder? The answer to this is that you cannot retrieve

that line item information so you can see which line items in the PurchaseOrder/SalesOrder

came from which lines in the bill, item receipt, or invoice.

234 Chapter 17: Linking ItemReceipt/Bill to PurchaseOrder, Invoice to Sales Order

(c) 2013 Intuit Inc. All rights reserved.

Linking Bill or ItemReceipt to PurchaseOrder

Generally, the SDK is intended to allow an application to perform the same tasks

programmatically that a user would do manually within QuickBooks. Accordingly, to

understand how to use the SDK transaction linking, you need to know how this feature

operates for an end user looking at the QuickBooks UI.

The Basic User Scenario in the QuickBooks UI

In the QuickBooks UI, when a user creates a Bill or ItemReceipt (BillAdd or

ItemReceiptAdd in the SDK), the user selects a vendor. If the vendor has any open purchase

orders, the user is presented with a selection list of purchase orders (see Figure 17-1 on

page 234).

Figure 17-1 Creating a Bill: Open PO advisory

After the user links a PurchaseOrder to the ItemReceipt or Bill, data from that

PurchaseOrder automatically fills the ItemReceipt or Bill, so that every receivable line item

in the PurchaseOrder becomes a line item in the ItemReceipt or Bill (Figure 17-2).

Linking Bill or ItemReceipt to PurchaseOrder 235

(c) 2013 Intuit Inc. All rights reserved.

Figure 17-2 Linking PO to new Bill

Notice the PurchaseOrder number circled in the lower right of the figure. This shows which

line items belong to which PurchaseOrder, which is useful if the user links multiple

PurchaseOrders to the Bill.

The user could simply accept all the PurchaseOrder line items as received by clicking the

Save and Close” button. If the user does this, and subsequently displays the PurchaseOrder,

it will indicate that all its items were received, as shown in Figure 17-3 on page 236.

236 Chapter 17: Linking ItemReceipt/Bill to PurchaseOrder, Invoice to Sales Order

(c) 2013 Intuit Inc. All rights reserved.

Figure 17-3 PurchaseOrder after linking to a Bill

But what happens if the user received only some of the items in the PurchaseOrder, and not

others? The user in this case would simply modify the quantity field in any line item that

was not fully received. (See the circled area in Figure 17-4 on page 236.)

Figure 17-4 Partially accepting PO by zeroing Quantity

Linking Bill or ItemReceipt to PurchaseOrder 237

(c) 2013 Intuit Inc. All rights reserved.

The PurchaseOrder in this case would not display the “Received in Full” stamp, but would

show received and unreceived items with the number received indicated. The fully received

items are marked as closed “Clsd.” See the circled area in Figure 17-5 on page 237.

Figure 17-5 PurchaseOrder partially received in a Bill

Linking an ItemReceipt or Bill to PurchaseOrder Using the SDK

You can duplicate the previously described UI user scenarios in the SDK by linking an

ItemReceipt or Bill to one or more PurchaseOrders in the SDK when you create an

ItemReceipt or Bill.

The SDK supplies one element and one aggregate to enable you to make the PurchaseOrder

links you want:

• To link a Bill or ItemReceipt to one or more entire PurchaseOrders, use the

LinkToTxnID element in the BillAdd or ItemReceiptAdd request. (This adds all of the

line items in the specified PurchaseOrder.) See the circled area of Figure 17-6 on page

238, which shows the Onscreen Reference listing. The purchase orders linked in this

way to an item receipt will be marked as received in full and will be closed as a result

of the ItemReceiptAdd.

• To link a Bill or ItemReceipt to specific line items in one or more PurchaseOrders, use

the LinkToTxn aggregate inside the ItemLineAdd aggregate. See the circled area of

Figure 17-7 on page 239, which shows the Onscreen Reference listing. Typically, if all

the items don’t arrive at the same time, a separate item receipt is issued when the items

are received. Purchase orders linked in this way to item receipts will be closed only

after all of the items are received.

238 Chapter 17: Linking ItemReceipt/Bill to PurchaseOrder, Invoice to Sales Order

(c) 2013 Intuit Inc. All rights reserved.

NOTE

Purchase Orders are automatically closed and marked as fully
received when the item receipts linked to them fully receive
the purchase order line items. However, if you want to close a
Purchase Order or close out line items in a Purchase Order
without receiving the items, you can perform a
PurchaseOrderMod and manually close individual line items or
the Purchase Order itself.

Figure 17-6 Use LinkToTxnID element to link entire PO

Linking Bill or ItemReceipt to PurchaseOrder 239

(c) 2013 Intuit Inc. All rights reserved.

Figure 17-7 Using LinkToTxn aggregate to link one PO line item

Receiving/Billing Against All of the Purchase Order Lines

The following sample qbXML shows a BillAdd request that is linked to two different

PurchaseOrders using LinkToTxnID. Using this element means that the resulting Bill will

contain all of the line items from the specified PurchaseOrders.

<?qbxml version="4.0"?>

<QBXML>

<QBXMLMsgsRq onError = "stopOnError">

<BillAddRq requestID = "2">

<BillAdd>

<VendorRef>

<FullName>Daigle Lighting</FullName>

</VendorRef>

<APAccountRef>

<FullName>Accounts Payable</FullName>

</APAccountRef>

<TxnDate>2004-10-28</TxnDate>

240 Chapter 17: Linking ItemReceipt/Bill to PurchaseOrder, Invoice to Sales Order

(c) 2013 Intuit Inc. All rights reserved.

<DueDate>2004-11-28</DueDate>

<TermsRef>

<FullName>Net 30</FullName>

</TermsRef>

<LinkToTxnID>25D6-1071508328</LinkToTxnID>

<LinkToTxnID>53C4-1197730858</LinkToTxnID>

</BillAdd>

</BillAddRq>

</QBXMLMsgsRq>

</QBXML>

In the above qbXML sample, notice the required element VendorRef. The vendor you

specify here must match the vendor in all of the PurchaseOrders you are linking in the

BillAdd or ItemReceiptAdd. (You can only specify one vendor per BillAdd or

ItemReceiptAdd.)

Also, notice the APAccountRef. It is included here simply to encourage the practice of

using this. If you don’t include this, the QuickBooks default AP account will be used,

which may not be desirable if you have AP accounts other than the default AP account.

There is a common pitfall of SDK programming where programmers omit the

APAccountRef when creating Bills--thereby using the default APAccount, and then specify

a different APAccountRef when paying the Bill (using BillPayment*).

Finally, notice that the two LinkToTxnID elements contain the TxnID of the

PurchaseOrders that are to be linked. The BillAdd or ItemReceiptAdd request will fail if the

PurchaseOrders used here have already been closed.

The result of this sample qbXML is that all receivable line items in the linked

PurchaseOrders using LinkToTxnID are received and closed: the PurchaseOrder is closed

in its entirety.

Receiving/Billing Against Specific Purchase Order Lines

The following sample qbXML shows a BillAdd request that is linked to two individual line

items from one purchase order.

<?qbxml version="4.0"?>

<QBXML>

<QBXMLMsgsRq onError = "stopOnError">

<BillAddRq requestID = "2">

<BillAdd>

<VendorRef>

<FullName>Daigle Lighting</FullName>

</VendorRef>

<APAccountRef>

<FullName>Accounts Payable</FullName>

</APAccountRef>

<TxnDate>2004-10-28</TxnDate>

<DueDate>2004-11-28</DueDate>

<TermsRef>

<FullName>Net 30</FullName>

</TermsRef>

<ItemLineAdd>

<LinkToTxn>

Linking Bill or ItemReceipt to PurchaseOrder 241

(c) 2013 Intuit Inc. All rights reserved.

<TxnID>53DD-1197743928</TxnID>

<TxnLineID>53DF-1197743928</TxnLineID>

</LinkToTxn>

</ItemLineAdd>

<ItemLineAdd>

<LinkToTxn>

<TxnID>53DD-1197743928</TxnID>

<TxnLineID>53E0-1197743928</TxnLineID>

</LinkToTxn>

</ItemLineAdd>

</BillAdd>

</BillAddRq>

</QBXMLMsgsRq>

</QBXML>

Receiving/Billing Specific Purchase Order Lines From Multiple
Purchase Orders

You can receive items or bill against specific purchase order line items from different

purchase orders, as per the sample below. You can, in the same request, do all this along

with receiving/billing against an entire purchase order, again, as shown below.

<?qbxml version="4.0"?>

<QBXML>

<QBXMLMsgsRq onError = "stopOnError">

<BillAddRq requestID = "2">

<BillAdd>

<VendorRef>

<FullName>Daigle Lighting</FullName>

</VendorRef>

<APAccountRef>

<FullName>Accounts Payable</FullName>

</APAccountRef>

<TxnDate>2004-10-28</TxnDate>

<DueDate>2004-11-28</DueDate>

<LinkToTxnID>25D6-1071508328</LinkToTxnID>

<LinkToTxnID>53C4-1197730858</LinkToTxnID>

<TermsRef>

<FullName>Net 30</FullName>

</TermsRef>

<ItemLineAdd>

<LinkToTxn>

<TxnID>53DD-1197743928</TxnID>

<TxnLineID>53DF-1197743928</TxnLineID>

</LinkToTxn>

</ItemLineAdd>

<ItemLineAdd>

<LinkToTxn>

<TxnID>58DD-1197743928</TxnID>

<TxnLineID>53E0-1197743928</TxnLineID>

</LinkToTxn>

</ItemLineAdd>

</BillAdd>

</BillAddRq>

</QBXMLMsgsRq>

</QBXML>

242 Chapter 17: Linking ItemReceipt/Bill to PurchaseOrder, Invoice to Sales Order

(c) 2013 Intuit Inc. All rights reserved.

In the above qbXML sample, notice that you can use both types of links: you can link entire

PurchaseOrders and link individual lines from one or more PurchaseOrders in the same

BillAdd or ItemReceiptAdd request. There are some important rules that you must follow,

however. These are listed under “Rules For Linking a Bill or ItemReceipt to a

PurchaseOrder” on page 242.

As indicated in the sample qbXML, the SDK allows you to link a Bill or ItemReceipt to

multiple PurchaseOrders, as long as they are from the same vendor (which is specified in

the VendorRef).

Rules For Linking a Bill or ItemReceipt to a PurchaseOrder

The following rules are enforced during runtime, and are listed here to help you avoid

runtime errors, some of which may not be obvious to track down and fix.

• Rule 1: Don’t use the same TxnID in a LinkToTxnID element and a LinkToTxn

aggregate in the same Bill or Item receipt.

• Rule 2: If you link to specific line items (the LinkToTxn aggregate), you must maintain

the order of lines between the PurchaseOrder and the ItemReceipt or Bill. For example,

you may not list a LinkToTxn aggregate for Purchase Order line 2 and then list a

LinkToTxn aggregate for PurchaseOrder line 1. The LinkToTxn aggregate specifying

PO Line 1 must precede the LinkToTxn aggregate specifying PO Line 2, and so on.

• Rule 3: If you use LinkToTxn aggregates, you cannot mix lines from different

PurchaseOrders in the ItemReceipt or Bill. That is, you cannot specify line 1 of

PurchaseOrder A, then line 1 of PurchaseOrder B followed by line 2 of PurchaseOrder

A, and so on. All of the desired PurchaseOrder A lines must be specified in LinkToTxn

aggregates sequentially before any of the PurchaseOrder B lines.

• Rule 4: If a PurchaseOrder contains a group line item, you must link only to the

individual lines within the group, not to the group itself. A group item is essentially a

UI convenience and is not linkable.

• Rule 5: When linking a Bill or ItemReceipt to a PurchaseOrder, the vendors (in the

VendorRef aggregates) for each of these must match.

• Rule 6: You may only link to receivable Purchase Order lines. That is, for that Purchase

Order line, the ReceivedQuantity element must exist, it cannot be marked manually

closed, and the Quantity must be greater than the ReceivedQuantity.

• Rule 7: You cannot specify both an ItemRef and a LinkToTxn aggregate within the

same line item. You’ll get a conflict error.

Why Does the OSR List LinkToTxn for Unsupported Transactions?

Because of the way the qbXML spec makes use of macros to ensure that common elements

are consistent across multiple request types, the LinkToTxn aggregate within the

ItemLineAdd aggregate also appear in the VendorCreditAdd, CheckAdd,

Converting ItemReceipts to Bills 243

(c) 2013 Intuit Inc. All rights reserved.

CreditCardChargeAdd, and CreditCardCreditAdd requests, even though these are not

implemented. If you attempt to use the LinkToTxn aggregate in those requests you will get

a not supported warning (statusCode 530) in your response.

Converting ItemReceipts to Bills

The QuickBooks UI makes it look like Bills can be linked to ItemReceipts by clicking the

Receive Bill icon in the vendor navigator. However, the UI has not actually linked the Bill

to the ItemReceipt, it has converted the ItemReceipt to a Bill. If you query for the

ItemReceipt, it will no longer be there, and the PurchaseOrder will record only the link to

the Bill.

Notice that although the UI actually converts this transaction, that same functionality does

not exist in the SDK. However, you can achieve the same end result by deleting the

ItemReceipt using the TxnDel request and using BillAdd to link a bill to the PurchaseOrder

instead of an ItemReceipt.

Limitations and Pitfalls of Modifying a Bill or ItemReceipt

You cannot link a PurchaseOrder to a Bill or ItemReceipt in the BillMod and

ItemReceiptMod requests. That is, you cannot add new lines that link to a PurchaseOrder to

an existing Bill or ItemReceipt. Also, when you modify transaction lines in a Bill or an

ItemReceipt, you may lose links between the Bill and the PurchaseOrder or between the

ItemReceipt and the PurchaseOrder. So you should be very careful before modifying

transaction lines.

ItemReceipt and Bill Split Option for QuickBooks Enterprise

ItemReceipt and Bill transactions split is a feature which allows an ItemReceipt and a Bill

to be two transactions on their own instead of one transaction that share the ItemReceipt/

Bill states. The ItemReceipt/Bill split feature is created to solve inventory requirements

from our users that the current existing design of one transaction did not solve. For

example, a user writes up an ItemReceipt on 1/1/2011 for receiving some inventories and

then on 2/1/2011, a Bill is received. In our current one transaction design the Bill on 2/1/

2011 will replace the ItemReceipt on 1/1/2011. This will create a problem of not enough

quantity on hand for building assemblies that depend on receiving inventories on 1/1/2011.

This feature will only be available to Enterprise users and is controlled by a preference to

allow our users to continue with the one transaction design or completely switch to the new

two transaction split design.

• ItemReceipt and Bill can be brought up separately on the UI and edited simultaneously

by our users. They no longer share the same UI with a check box to identify as an

ItemReceipt or Bill.

• Two new link types will be introduced. One new link type is to allow linking from a

Purchase Order to a Bill since the Bill is split from the ItemReceipt. Another new link

244 Chapter 17: Linking ItemReceipt/Bill to PurchaseOrder, Invoice to Sales Order

(c) 2013 Intuit Inc. All rights reserved.

type is to allow linking from ItemReceipt to Bill or reverse since ItemReceipt and Bill

are separate transactions.

• Purchase Order targets will contain two new fields to hold information about the Bills

they link to.

• ItemReceipt cost will no longer be allowed to be edited by users and they will contain

the average costing of the Bills in the order.

• A new Inventory Offset account is introduced to wash the monies posted between

ItemReceipts and Bills.

• ItemReceipts will post against Inventory Offset (src target) and Inventory Asset/

income/expense (dist targets).

• Bills will post against Account Payable (src targets) and Inventory Offset (dist targets).

• Item history will only pick up ItemReceipt targets with Inventory Offset account for

calculating quantity and on hand and average costing.

Re: “Is Manually Closed” in Purchase Orders and Sales Orders

On a purchase order, a check in the Closed column can indicate either that the items have

been received in full or that the line item has been manually closed. To determine why a

line item was closed, check its IsManuallyClosed field in PurchaseOrderLineRet. If this

field is False, then compare the ReceivedQuantity value with the Quantity originally

ordered. If the Quantity is equal to the ReceivedQuantity value, the order is fully received.

Note that if you try to manually close a line that has already been fully received, you will

receive an error.

The IsManuallyClosed flag on the main transaction takes precedence over the

IsManuallyClosed flag on individual lines within the transaction. To avoid ambiguity, if the

IsManuallyClosed flag is specified for the main transaction, do not set it for individual

lines.

Linking Invoices to SalesOrders

The Invoice to SalesOrder linking works very similar to ItemReceipt/Bill and

PurchaseOrder linking. As is the case with those other types of transaction linking, it helps

to first take a look at how this feature works for an end user within the QuickBooks UI.

IMPORTANT

Since a sales order is a non-posting transaction, QuickBooks
business logic doesn’t require the sales tax information at the
point where the SalesOrder is added. (In the OSR this is an
optional field.) However, the sales tax item IS required by the
business logic for the invoice. So if the SalesOrder doesn’t
have a SalesTaxItem set for it, you need to modify it so that it
does have one before you create an invoice using that sales
order.

Linking Invoices to SalesOrders 245

(c) 2013 Intuit Inc. All rights reserved.

The Basic User Scenario in the QuickBooks UI

In the QuickBooks UI, during invoice creation the user selects a customer to invoice

against. If the customer has outstanding sales orders, the user is presented with a selection

list of available sales order to link against (Figure 17-8).

Figure 17-8 From the UI: Selecting SaleOrders to Link to Invoice

If the user selects one or more of the sales orders, the user is prompted for the type of

linking: import all of the sales order lines, or just some (Figure 17-9)

246 Chapter 17: Linking ItemReceipt/Bill to PurchaseOrder, Invoice to Sales Order

(c) 2013 Intuit Inc. All rights reserved.

Figure 17-9 Invoice entire SalesOrder or or just a partial

If the user chooses “Create invoice for all of the sales order(s)” then for each sales order

selected in the list, all of the line items will be added to the invoice: (Figure 17-10)

Linking Invoices to SalesOrders 247

(c) 2013 Intuit Inc. All rights reserved.

Figure 17-10 Invoicing against two complete sales orders

In this scenario, all of the sales order lines and quantities are imported: notice in the circled

area that the source sales order for each line is listed, and the ordered quantities and the

invoiced quantities are the same. (The user can change the invoiced quantities.)

If instead of choosing to invoice against entire sales orders, the user chooses “Create

invoice for selected items”, an invoice quantities form is posted to allow the user to change

quantities before the sales order lines are dumped into the invoice form (Figure 17-11):

248 Chapter 17: Linking ItemReceipt/Bill to PurchaseOrder, Invoice to Sales Order

(c) 2013 Intuit Inc. All rights reserved.

Figure 17-11 Partial Invoicing against Sales Orders

The user simply changes the quantities as desired, or enters a value of 0 if the customer

isn’t to be invoiced for a particular item. (By default, QuickBooks doesn’t print invoice

items with 0 quantities, but be forewarned: the user can change this.) When the user is

done, the populated invoice form is shown.

Automatic Selection of Invoice Template

In the UI, if the user invoices against more than one sales order, the default invoice

template changes to the multiple sales order template. This same behavior is reflected in the

SKD. That is, if you don’t specify a template in the TemplateRef and you link to more than

one sales order, the default invoice template that will be used is the multiple sales order

template.

Linking Invoices to SalesOrders in the SDK

You can automate the UI user scenarios as we just described using the SDK. You just need

to link an invoice to one or more SalesOrders in the SDK when you create that invoice. The

way the linking works is identical to the linking used between Bill/ItemReceipt and

PurchaseOrder described earlier in this chapter.

Linking Invoices to SalesOrders 249

(c) 2013 Intuit Inc. All rights reserved.

You use one (or more) LinkToTxnID element at the invoice level to link to the entire Sales

Order and pull in all its lines, or you use a LinkToTxn aggregate at the line level to pull in a

specific sales order line. Or, you can use a combination: pull in some entire sales orders and

also some specific lines from other sales orders.

What Happened to My Invoice BillAddress/ShipAddress Data?

If you link your invoice to a sales order that contains a customer address, the result is that

the sales order’s address will be pulled in and used, even if you specify a different

BillAddress and/or ShipAddress in the InvoiceAdd. In this event, none of the data you

specify in the InvoiceAdd BillAddress/ShipAddress will be written to the invoice, including

any notes. This approximates the behavior in the UI.

If you need to update the BillAddress/ShipAddress data, you can do an InvoiceMod after

the InvoiceAdd.

Invoicing Against the Whole Sales Order

To link an invoice to one or more entire Sales Orders, use the LinkToTxnID element in the

InvoiceAdd request. (This adds all of the line items in the specified Sales Order.) See the

circled area of Figure 17-12, which shows the Onscreen Reference listing. The sales orders

linked in this way to an invoice will be marked as fully invoiced and closed.

250 Chapter 17: Linking ItemReceipt/Bill to PurchaseOrder, Invoice to Sales Order

(c) 2013 Intuit Inc. All rights reserved.

Figure 17-12 LinkToTxnID in InvoiceAdd

You can make as many of these entire SalesOrder links to your invoice as you want. Just

specify a separate LinkToTxnID for each one whose lines are to be pulled into the invoice.

Notice that you cannot use the same TxnId in a LinktoTxnID element, and also inside the

LinktoTxn aggregate. That is, you cannot link the whole SalesOrder and then specify one

line item from it. You’ll get a runtime error if you do.

Linking Invoices to SalesOrders 251

(c) 2013 Intuit Inc. All rights reserved.

Invoicing Against Specific Sales Order Lines

To link an invoice to a specific line item in a SalesOrder, use the LinkToTxn aggregate

inside the ItemLineAdd aggregate. See the circled area of Figure 17-13, which shows the

Onscreen Reference listing. Notice where it is located. The order is important if you want to

change the Quantity, for example. Sales orders linked in this way to invoices will be closed

only after all of the items are invoiced.

Figure 17-13 LinkToTxn in InvoiceAdd

252 Chapter 17: Linking ItemReceipt/Bill to PurchaseOrder, Invoice to Sales Order

(c) 2013 Intuit Inc. All rights reserved.

Linking Rules

The rules you must follow are the same as listed above under “Rules For Linking a Bill or

ItemReceipt to a PurchaseOrder.”

Example: Using qbXML to Invoice Against Sales Orders

The following qbXML script links two SalesOrders to the invoice, bringing all lines in from

those two SalesOrders. It also links to specific line items from two other SalesOrders.

<?xml version="1.0" ?>

<?qbxml version="6.0"?>

QBXML>

<QBXMLMsgsRq onError="stopOnError">

<InvoiceAddRq requestID="0">

<InvoiceAdd>

<CustomerRef>

<FullName>Kaushik, Laxmi</FullName>

</CustomerRef>

<ARAccountRef>

<FullName>Accounts Receivable</FullName>

</ARAccountRef>

<IsToBeEmailed>1</IsToBeEmailed>

<LinkToTxnID>611-1197728725</LinkToTxnID>

<LinkToTxnID>616-1197728784</LinkToTxnID>

<InvoiceLineAdd>

<Quantity>1</Quantity>

<LinkToTxn>

<TxnID>65F-1197730157</TxnID>

<TxnLineID>661-1197730157</TxnLineID>

</LinkToTxn>

</InvoiceLineAdd>

<InvoiceLineAdd>

<Quantity>1</Quantity>

<LinkToTxn>

<TxnID>665-1197730212</TxnID>

<TxnLineID>667-1197730212</TxnLineID>

</LinkToTxn>

</InvoiceLineAdd>

</InvoiceAdd>

</InvoiceAddRq>

</QBXMLMsgsRq>

</QBXML>

Example: Using QBFC to Invoice Against Sales Orders

The following one-shot QBFC sample is a VB sample that links two SalesOrders to the

invoice, bringing all lines in from those two SalesOrders. It also links to specific line items

from two other SalesOrders.

In the sample, notice how the invoice object IInvoiceAdd is returned from the

AppendInvoiceAddRq method and then is set from that point. Also notice how each invoice

line is added and constructed, with the IInvoiceLineAdd object returned and filled. Notice

the reuse of the IInvoiceLineAdd object for multiple item lines.

Linking Invoices to SalesOrders 253

(c) 2013 Intuit Inc. All rights reserved.

Dim SessionManager As QBSessionManager

Set SessionManager = New QBSessionManager

SessionManager.OpenConnection "", "InvoiceAdd_wSalesOrder_Sample"

SessionManager.BeginSession "", omDontCare

Dim InvoiceAddSet As IMsgSetRequest

Set InvoiceAddSet = SessionManager.CreateMsgSetRequest("US", 6, 0)

Dim InvoiceSalesAdd As IInvoiceAdd

Set InvoiceSalesAdd = InvoiceAddSet.AppendInvoiceAddRq

InvoiceSalesAdd.CustomerRef.FullName.setValue "Kaushik, Laxmi"

InvoiceSalesAdd.ARAccountRef.FullName.setValue "Accounts Receivable"

InvoiceSalesAdd.IsToBeEmailed.setValue True

InvoiceSalesAdd.LinkToTxnIDList.Add "611-1197728725"

InvoiceSalesAdd.LinkToTxnIDList.Add "616-1197728784"

Dim InvoiceLineAdder As IInvoiceLineAdd

Set InvoiceLineAdder = InvoiceSalesAdd.ORInvoiceLineAddList.Append.InvoiceLineAdd

InvoiceLineAdder.Quantity.setValue 1

InvoiceLineAdder.LinkToTxn.TxnID.setValue "65F-1197730157"

InvoiceLineAdder.LinkToTxn.TxnLineID.setValue "661-1197730157"

Set InvoiceLineAdder = InvoiceSalesAdd.ORInvoiceLineAddList.Append.InvoiceLineAdd

InvoiceLineAdder.Quantity.setValue 1

InvoiceLineAdder.LinkToTxn.TxnID.setValue "665-1197730212"

InvoiceLineAdder.LinkToTxn.TxnLineID.setValue "667-1197730212"

Dim InvoiceSalesAddResp As IMsgSetResponse

Set InvoiceSalesAddResp = SessionManager.DoRequests(InvoiceAddSet)

SessionManager.EndSession

SessionManager.CloseConnection

254 Chapter 17: Linking ItemReceipt/Bill to PurchaseOrder, Invoice to Sales Order

(c) 2013 Intuit Inc. All rights reserved.

Adding a SalesReceipt 255

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 18 1

USING SALESRECEIPT FUNCTIONALITY 1

The ability to add SalesReceipts in the SDK has been around forever, “forever” in this case

meaning since the release of qbXML 1.0. However, some key new SalesReceipt features

were added a little more recently, such as the ability to support credit card transactions (4.1)

and the ability to modify sales receipts (5.0). This chapter provides some information on

using the SalesReceipt features in the SDK: namely how to add, modify, query, void, and

delete SalesReceipts.

Adding a SalesReceipt

In the UI, you add a sales receipt by clicking on the Create Sales Receipts icon in the main

QuickBooks navigator. This displays the Enter Sales Receipts form shown in Figure 18-1.

Figure 18-1 Entering new sales receipts from the UI

256 Chapter 18: Using SalesReceipt Functionality

(c) 2013 Intuit Inc. All rights reserved.

If you compare the OSR listing for SalesReceiptAdd with the UI, most of what you see in

the UI has easily identifiable counterparts in the OSR listing. There are exceptions, of

course. We’ve circled some of the less obvious OSR-to-UI mappings in Figure 18-1, and

labeled them with the corresponding OSR tag. These are mainly tax-related.

The OSR listing is quite lengthy, so we’ve broken it up in the following figures and

provided some general commentary on each of these smaller OSR pieces.

Figure 18-2 OSR listing for SalesReceiptAdd: main part and addresses

In Figure 18-2, notice the customer Ref, the BillAddress aggregate, and the ShipAddress

aggregate. If the customer has already been set up in QuickBooks with a billing address and

a default shipping address, you can simply supply the customer Ref and omit the Bill and

Ship Address. That information will be automatically added to the SalesReceipt from the

referenced customer, and the Bill/Ship addresses will be returned in the SalesReceiptAdd

response, unless you use IncludeRetElement to limit data returns.

Adding a SalesReceipt 257

(c) 2013 Intuit Inc. All rights reserved.

Notice the ClassRef in Figure 18-2. If you use classes to track categories of sales (for

example, tracking transactions by departments), you need to set up your classes first, then

reference the class that you want this SalesReceipt to be tracked under. This ClassRef is the

transaction-level ClassRef. If you also want to track the individual line items in the

transaction, you also need to specify the ClassRef at the line item level, as shown in Figure

18-5. Notice that even if Class tracking is turned off in in a company’s Accounting

preferences, the ClassRef data for the SalesReceipt transaction will be saved: the class data

simply won’t be visible in QuickBooks unless class tracking is turned on in preferences.

You can add a TemplateRef if you want to use an existing template containing your

customizations to the Sales Receipt form. Notice that the SDK does not enable you to

change the template “on the fly” to show a different set of fields, columns, etc.

Finally, notice the TxnDate and RefNumber tags. If you omit the TxnDate tag, the current

date is used for the transaction date. If you omit the RefNumber tag, QuickBooks will

supply the reference number for you.

Let’s scroll down a bit more in Figure 18-3 to see more details of the OSR listing.

Figure 18-3 PaymentMethod/SalesRep/ShipMethod Refs and more

258 Chapter 18: Using SalesReceipt Functionality

(c) 2013 Intuit Inc. All rights reserved.

In Figure 18-3, notice the IsPending tag. You can set this to true if you want to keep the

transaction from posting if you don’t want to finalize the sale for some reason, such as

incomplete sale or for estimates. However, there are usually other preferrable ways to

support these kinds of activities, such as Estimates, SalesOrders and so forth. The default is

false so you normally just omit this tag.

You should supply the PaymentMethodRef to indicate the method of payment. If you use

the CreditCardTxnInfo aggregate and its sub-aggregates, you must specify the

PaymentMethodRef to indicate the credit card type used.

The CheckNumber tag is used if you select Check as your payment method. The SDK (or

the UI) won’t prevent you from specifying this even if you select other payment methods

but this can confuse your customer. This value will show up in the UI in the Check Number

text box.

DueDate is another tag like IsPending that supports the use of sales receipts in the unusual

case where the transaction is non posting. Normally you wouldn’t use this tag.

The SalesRepRef tag can be supplied if you use Sales Reps. The data is visible in the

SalesReceipt only if the template used for Sales Receipts has the Rep field turned on. This

tag is tricky if you use FullNames in the ref. You can only supply a 5 character value: so if

you try to supply a larger number, say “John Martin”, the request will fail validation at the

parser level. If you supply simply “John” it will also fail. What you need to do in nearly all

cases is to make sure the Sales Rep is created with initials and use those initials within the

FullName tag for the SalesRepRef. (If you do a SalesRepQuery, those initials are returned

in the response in the Initial tag.)

The ShipDate tag is automatically added with the current date when the SalesReceipt is

created, whether you actually do any shipping or even if the customer has no shipping

address. So you normally don’t need to supply this tag. However, if you need to indicate

some other date for some reason, you can supply that date in this tag.

The ItemSalesTaxRef tag specifies the already set-up sales tax item that is to be applied to

each taxable item in the sales receipt. This sales tax item already added in QuickBooks
contains a single sales tax rate that applied to the items and it contains pay-to information

(the agency to which the tax is paid.) Remember that the tax status specified in the

CustomerSalesTaxCodeRef overrides the other tax settings in the SalesReceipt.

Notice the IsToBePrinted tag, corresponding to the “To be printed” checkbox in the UI.

Notice also that the SDK currently does not support the “To be emailed” feature that the UI

supports.

The CustomerSalesTaxCodeRef tag specifies the customer-related tax code that governs the

sales tax on this transaction. The QuickBooks default codes are Tax and Non (tax), with

Tax allowing any taxes specified in the other tax refs to be calculated and charged, and Non

suspending any such taxes. This is a customer-related tax setting because it hinges on the

customer’s tax status. For example, customers who are government agencies are usually

Non taxable.

Adding a SalesReceipt 259

(c) 2013 Intuit Inc. All rights reserved.

The DepositToAccountRef tag species the QuickBooks account that receives the funds from

this transaction. Undeposited Funds is the default account and is normally used. Notice that

if you don’t specify an account using the DepositToAccountRef tag the default is

automatically used. It is probably a good practice to specify accounts, however, wherever

you have the opportunity to do so.

Figure 18-4 shows the OSR tag listings for including credit card data in the SalesReceipt.

Figure 18-4 Credit card-related tags in the SalesReceipt

You cannot use the optional CreditCardTxnInfo aggregate unless the company is currently

subscribed to the QuickBooks Merchant Service (QBMS) and has a valid Merchant

account. If the company hasn’t been set up with QBMS already, you’ll get a runtime error

when you send a SalesReceiptAdd request containing this aggregate. How can you

determine this in the SDK? Simply do a company query and check the SubscribedServices

aggregate for the QBMS service.

If you do supply the CreditCardTxnInputInfo aggregate, you must supply the

CreditCardTxnResultInfo and the CreditCardTxnInfo sub aggregates along with all their

required elements, as shown in the OSR. Notice that the CreditCardTxnType usually has

the value Charge for a SalesReceipt, but VoiceAuthorization and Refund are also supported.

260 Chapter 18: Using SalesReceipt Functionality

(c) 2013 Intuit Inc. All rights reserved.

The InputInfo subaggregate is the data from the originating qbmsXML request that effected

the credit card transaction. The ResultInfo subaggregate is the qbmsXML response to that

request. You include all of this data in the SalesReceipt request if you want to save that

QBMS transaction data within QuickBooks. For more information, see the Developer’s

Guide for QB Merchant Services.

The CreditCardTxnInfo cannot be modified in the SalesReceipt, which is why that

aggregate isn’t listed in the OSR for SalesReceiptMod.

If the original QBMS transaction was a qbmsXML 2.0 or greater request, and the qbXML

spec level of your SalesReceiptAdd request is 6.0 or greater, the credit card number must be

masked, that is, all X, except for the last 4 digits.

Notice that including the QBMS transaction data in the request does not result in any

interactions with QBMS or in any attempts to connect to QBMS.

Adding a SalesReceipt 261

(c) 2013 Intuit Inc. All rights reserved.

Figure 18-5 shows the OSR tag listings for the line items in the SalesReceipt.

Figure 18-5 Line item-related tags for SalesReceiptAdd

Each line item to be added in the SalesReceipt is added under a separate

SalesReceiptLineAdd aggregate. Within each SalesReceiptLineAdd aggregate, you must

include an ItemRef, which specifies the QuickBooks item, and you must supply the

Quantity.

Notice that you don’t have to supply a Rate (any of the available Rate-related tags) or an

Amount. The rate is the price of the item and is taken directly from the item in the ItemRef,

if the item is set up properly with price data. The Amount is then calculated from the

Quantity and the Rate. If you do choose to supply a Rate or an Amount, remember that you

can supply one or the other, but not both.

262 Chapter 18: Using SalesReceipt Functionality

(c) 2013 Intuit Inc. All rights reserved.

The SalesTaxCodeRef tag allows you to specify whether the line item is taxable or not. You

override this value if you set a conflicting value (taxable or not taxable) in the

CustomerSalesTaxRef for the entire sales receipt.

The OverrideItemAccountRef tag allows you to specify an account other than the

DepositToAccountRef account for a specific line item.

Notice the DataExt tag, which is available for QuickBooks 2006 and later. This tag allows

you to specify custom data at the line item level. It provides a tremendous performance

enhancement over the former methods of using custom data in SalesReceipts.

For sake of completeness, we show the final set of tags in the OSR listing for

SalesReceiptAdd in Figure 18-6.

Figure 18-6 Line item group tags

Some Expected Data May be Missing from the Response

If the integrated application lacks sufficient permissions for sensitive data, that data is not

returned in the response to Add, Modify, and Query requests. For example, although an

integrated application does not need access to sensitive data permissions for submitting a

SalesReceiptAdd request that contains credit card data, that credit card data won’t be

returned in the response if the application doesn’t have the required permissions. You can

set these permissions in the Integrated Applications preferences in QuickBooks.

Adding a SalesReceipt in QBFC

Listing 18-1 shows how to construct the SalesReceipt in QBFC. The sample takes the

shipping address from the customer Ref, and the line item prices from the item Refs. The

payment is a credit card payment effected previously with a qbmsXML interaction with

QBMS.

Adding a SalesReceipt 263

(c) 2013 Intuit Inc. All rights reserved.

______Listing 18-1 Constructing a SalesReceiptAdd in QBFC

Public Sub QBFC_AddSalesReceipt()

Dim SessionManager As QBSessionManager

Set SessionManager = New QBSessionManager

SessionManager.OpenConnection "", "IDN Add SalesReceipt Sample"

 SessionManager.BeginSession "", omDontCare

Dim requestMsgSet As IMsgSetRequest

Set requestMsgSet = SessionManager.CreateMsgSetRequest("US", 5, 0)

' Initialize the message set request's attributes

requestMsgSet.Attributes.OnError = roeStop

' Add the request to the message set request object

Dim SalesRecptAdd As ISalesReceiptAdd

Set SalesRecptAdd = requestMsgSet.AppendSalesReceiptAddRq

'Set the properties in the assembly object

SalesRecptAdd.CustomerRef.FullName.setValue ("Jack Williams")

SalesRecptAdd.TemplateRef.FullName.setValue ("Test")

SalesRecptAdd.PaymentMethodRef.FullName.setValue ("Visa")

SalesRecptAdd.SalesRepRef.FullName.setValue ("JM")

SalesRecptAdd.ShipMethodRef.FullName.setValue ("UPS")

SalesRecptAdd.ItemSalesTaxRef.FullName.setValue ("CA State Sales Tax")

SalesRecptAdd.CustomerMsgRef.FullName.setValue ("Thank you for your business.")

SalesRecptAdd.DepositToAccountRef.FullName.setValue ("Undeposited Funds")

‘Add credit card data from prior qbmsXML transaction with QBMS

SalesRecptAdd.CreditCardTxnInfo.CreditCardTxnInputInfo.CreditCardNumber.setValue

("4111111111111111")

SalesRecptAdd.CreditCardTxnInfo.CreditCardTxnInputInfo.ExpirationYear.setValue (2008)

SalesRecptAdd.CreditCardTxnInfo.CreditCardTxnInputInfo.ExpirationMonth.setValue (11)

SalesRecptAdd.CreditCardTxnInfo.CreditCardTxnInputInfo.NameOnCard.setValue ("H. Rezoner")

SalesRecptAdd.CreditCardTxnInfo.CreditCardTxnInputInfo.CreditCardAddress.setValue ("12

West St., Westlands")

SalesRecptAdd.CreditCardTxnInfo.CreditCardTxnInputInfo.CreditCardPostalCode.setValue

("96965")

SalesRecptAdd.CreditCardTxnInfo.CreditCardTxnInputInfo.CreditCardTxnType.setValue

ccttCharge

SalesRecptAdd.CreditCardTxnInfo.CreditCardTxnResultInfo.ResultCode.setValue (0)

 SalesRecptAdd.CreditCardTxnInfo.CreditCardTxnResultInfo.ResultMessage.setValue

("STATUS OK")

SalesRecptAdd.CreditCardTxnInfo.CreditCardTxnResultInfo.CreditCardTransID.setValue

("V54A60275101")

264 Chapter 18: Using SalesReceipt Functionality

(c) 2013 Intuit Inc. All rights reserved.

SalesRecptAdd.CreditCardTxnInfo.CreditCardTxnResultInfo.MerchantAccountNumber.setValue

("4269281420247209")

 SalesRecptAdd.CreditCardTxnInfo.CreditCardTxnResultInfo.AuthorizationCode.setValue

("185PNI")

SalesRecptAdd.CreditCardTxnInfo.CreditCardTxnResultInfo.ReconBatchID.setValue

("420050223 MC 2005-02-23 QBMS 15.0 pre-beta")

SalesRecptAdd.CreditCardTxnInfo.CreditCardTxnResultInfo.PaymentGroupingCode.setValue (4)

SalesRecptAdd.CreditCardTxnInfo.CreditCardTxnResultInfo.PaymentStatus.setValue

(pssCompleted)

SalesRecptAdd.CreditCardTxnInfo.CreditCardTxnResultInfo.TxnAuthorizationTime.setValue

"2005-11-01", False

SalesRecptAdd.CreditCardTxnInfo.CreditCardTxnResultInfo.TxnAuthorizationStamp.setValue

(1109192233)

‘Now add the first line item

Dim SalesRecLineItem As IORSalesReceiptLineAdd

Dim SalesRecLineItem2 As IORSalesReceiptLineAdd

Set SalesRecLineItem = SalesRecptAdd.ORSalesReceiptLineAddList.Append

SalesRecLineItem.SalesReceiptLineAdd.ItemRef.FullName.setValue ("Metal Panel Assembly")

SalesRecLineItem.SalesReceiptLineAdd.Desc.setValue ("Metal Panel Assembly")

SalesRecLineItem.SalesReceiptLineAdd.Quantity.setValue (2)

SalesRecLineItem.SalesReceiptLineAdd.SalesTaxCodeRef.FullName.setValue ("Tax")

‘Add the second line item

Set SalesRecLineItem2 = SalesRecptAdd.ORSalesReceiptLineAddList.Append

SalesRecLineItem2.SalesReceiptLineAdd.ItemRef.FullName.setValue ("Screws")

SalesRecLineItem2.SalesReceiptLineAdd.Desc.setValue ("Large package of screws")

SalesRecLineItem2.SalesReceiptLineAdd.Quantity.setValue (6)

SalesRecLineItem2.SalesReceiptLineAdd.SalesTaxCodeRef.FullName.setValue ("Tax")

' Perform the request and obtain a response from QuickBooks

Dim responseMsgSet As IMsgSetResponse

Set responseMsgSet = SessionManager.DoRequests(requestMsgSet)

‘write the response to a file for grins

‘Need to use the Microsoft Scripting Runtime for this bit

Dim fname As String

Dim xml As String

xml = requestMsgSet.ToXMLString

fname = "XML_output.doc"

Dim fso As New FileSystemObject

Dim ts As TextStream

Set ts = fso.CreateTextFile(fname, True)

ts.Write (xml)

Adding a SalesReceipt 265

(c) 2013 Intuit Inc. All rights reserved.

' Close the session and connection with QuickBooks.

SessionManager.EndSession

SessionManager.CloseConnection

End Sub

Adding a SalesReceipt in qbXML

Listing 18-2 shows a SalesReceiptAdd request that uses a credit card payment previously

obtained from qbmsXML requests interacting with QBMS. The request contains two line

items, one that specifies an Amount and one that doesn’t specify an amount or rate, getting

that info automatically from the item.

______Listing 18-2 Constructing SalesReceiptAdd in qbXML

<?xml version="1.0" ?>

<?qbxml version="5.0"?>

<QBXML>

<QBXMLMsgsRq onError = "stopOnError">

<SalesReceiptAddRq requestID = "0">

<SalesReceiptAdd>

<CustomerRef>

<FullName>Kristie Abercrombie</FullName>

</CustomerRef>

<TemplateRef>

<FullName>Test</FullName>

</TemplateRef>

<SalesRepRef>

<FullName>JM</FullName>

</SalesRepRef>

<ItemSalesTaxRef>

<FullName>CA State Sales Tax</FullName>

</ItemSalesTaxRef>

<CustomerMsgRef>

<FullName>Thank you for your business.</FullName>

</CustomerMsgRef>

<CreditCardTxnInfo>

<CreditCardTxnInputInfo>

<CreditCardNumber>4111111111111111</CreditCardNumber>

<ExpirationMonth>11</ExpirationMonth>

<ExpirationYear>2008</ExpirationYear>

<NameOnCard>Harry Rezoner</NameOnCard>

<CreditCardAddress>12 West St., Westlands</CreditCardAddress>

<CreditCardPostalCode>96965</CreditCardPostalCode>

<TransactionMode>CardNotPresent</TransactionMode>

<CreditCardTxnType>Charge</CreditCardTxnType>

</CreditCardTxnInputInfo>

<CreditCardTxnResultInfo>

<ResultCode>0</ResultCode>

<ResultMessage>STATUS OK</ResultMessage>

<CreditCardTransID>V54A60275101</CreditCardTransID>

<MerchantAccountNumber>4269281420247209</MerchantAccountNumber>

266 Chapter 18: Using SalesReceipt Functionality

(c) 2013 Intuit Inc. All rights reserved.

<AuthorizationCode>185PNI</AuthorizationCode>

<ReconBatchID>

420050223 MC 2005-02-23 QBMS 15.0 pre-beta

</ReconBatchID>

<PaymentGroupingCode>4</PaymentGroupingCode>

<PaymentStatus>Completed</PaymentStatus>

<TxnAuthorizationTime>

2005-11-01T00:00:00

</TxnAuthorizationTime>

<TxnAuthorizationStamp>1109192233</TxnAuthorizationStamp>

</CreditCardTxnResultInfo>

</CreditCardTxnInfo>

<SalesReceiptLineAdd>

<ItemRef>

<FullName>Metal Panel Assembly</FullName>

</ItemRef>

<Desc>Metal Panel Assembly</Desc>

<Quantity>2</Quantity>

<Amount>120.00</Amount>

<SalesTaxCodeRef>

<FullName>Tax</FullName>

</SalesTaxCodeRef>

</SalesReceiptLineAdd>

<SalesReceiptLineAdd>

<ItemRef>

<FullName>Screws</FullName>

</ItemRef>

<Desc>Large Package of Screws</Desc>

<Quantity>10</Quantity>

<SalesTaxCodeRef>

<FullName>Tax</FullName>

</SalesTaxCodeRef>

</SalesReceiptLineAdd>

</SalesReceiptAdd>

</SalesReceiptAddRq>

</QBXMLMsgsRq>

</QBXML>

Modifying a SalesReceipt

The considerations and rules for modifying sales receipts is similar to modifying other

transactions. Because you can easily produce undesired results if you aren’t careful, you

need to become very familiar with the material on modifying transactions that is provided

in Chapter 10, “Modifying and Deleting Transactions and List Objects.” In particular, if you

modify any line items or group line items, be sure to follow the instructions on modifying

these as described in that chapter.

Modifying a SalesReceipt 267

(c) 2013 Intuit Inc. All rights reserved.

Special Limitations Imposed By Credit Card Payment Method

If the payment method used in the original SalesReceipt is a credit card, with the credit card

transaction data provided by QBMS via the qbmsXML requests and responses, you cannot

change the customer, payment method, or the total transaction amount, including any line

item changes that would change the total amount of the transaction.

Which SalesReceipt Fields Can Be Modified?

See the OSR listing for SalesReceiptMod. This listing contains all the fields that are

modifiable.

Which SalesReceipt Fields Can Be Cleared?

Table 18-1 and Table 18-2 provide a list of the fields in the SalesReceipt main body and

SalesReceipt line item fields, respectively, that can be cleared. If a field has a default value,

clearing the field results in the use of the default. If there is no default value, clearing

simply clears the field. Refer to the OSR for information on defaults for field values.

268 Chapter 18: Using SalesReceipt Functionality

(c) 2013 Intuit Inc. All rights reserved.

Table 18-1 Clearable SalesReceipt Fields

Table 18-2 Clearable Line Item/Group Line Item Fields

Modifying a SalesReceipt in qbXML

Listing 18-3 shows a SalesReceiptMod request that clears the sales rep and memo data in

the sales receipt specified, and inserts one line item between the existing two line items in

SalesReceipt Field Modify Clear Clear behavior

BillingAddress (and its sub-aggregates) Yes Yes Cleared

CheckNumber Yes Yes Cleared

Class Yes Yes Cleared

Customer Yes No

CustomerMessage Yes Yes Cleared

CustomerSalesTaxCode Yes Yes Cleared

DepositToAccount Yes No

DueDate Yes No

FOB Yes Yes Cleared

IsPending Yes No

IsToBePrinted Yes No

ItemSalesTax Yes No

Memo Yes Yes Cleared

PaymentMethod Yes Yes Cleared

RefNumber Yes Yes Cleared

SalesRep Yes Yes Cleared

ShipAddress (and its sub-aggregates) Yes Yes Cleared

ShipDate Yes No

ShipMethod Yes Yes Cleared

Template Yes No

TxnDate Yes No

Line/Group Line Items Fields in
SalesReceipt Modify Clear Clear behavior

Amount Yes No

Class Yes Yes Cleared

Description Yes Yes Cleared

Item reference Yes No

OverrideItemAccountRef Yes No

Quantity Yes No

Rate/Rate % Yes No

Sales tax code Yes No

Service date Yes Yes

Modifying a SalesReceipt in qbXML 269

(c) 2013 Intuit Inc. All rights reserved.

the receipt. (If there were any other line items, they are not specified in this request, so they

would be deleted from QuickBooks.)

Notice the use of the -1 in the TxnLineID tag for the new line item. The SDK uses

recognizes this value and causes the insertion to be made. You specify the location of the

new item within the sales receipt by placing it before or after one of the existing lines in the

Mod request.

______Listing 18-3 Constructing a SalesReceiptMod Request in QBXML

<?xml version="1.0" ?>

<?qbxml version="5.0"?>

<QBXML>

<QBXMLMsgsRq onError = "stopOnError">

<SalesReceiptModRq requestID = "0">

<SalesReceiptMod>

<TxnID>90-1131042763</TxnID>

<EditSequence>1131042763</EditSequence>

<TxnDate>2005-11-03</TxnDate>

<SalesRepRef>

<FullName/>

</SalesRepRef>

<Memo/>

<SalesReceiptLineMod>

<TxnLineID>92-1131042763</TxnLineID>

</SalesReceiptLineMod>

<SalesReceiptLineMod>

<TxnLineID>-1</TxnLineID>

<ItemRef>

<FullName>Metal Panel Assembly</FullName>

</ItemRef>

<Quantity>2</Quantity>

</SalesReceiptLineMod>

<SalesReceiptLineMod>

<TxnLineID>93-1131042763</TxnLineID>

</SalesReceiptLineMod>

</SalesReceiptMod>

</SalesReceiptModRq>

</QBXMLMsgsRq>

</QBXML>

Modifying a SalesReceipt in QBFC

Listing 18-4 shows a SalesReceiptMod construction where we query for a SalesReceipt by

RefNumber range, grab the first one we find, then modify some of the fields in the main

body, and then insert a new line item in the sales receipt after the first line. Because the

insertion changes the total amount, this request couldn’t be used with sales receipts having

a credit card payment method.

Some key things to notice in the sample code:

270 Chapter 18: Using SalesReceipt Functionality

(c) 2013 Intuit Inc. All rights reserved.

• In the original query we specify IncludeLineItems. By default, no line items are

returned in queries, and we need the line items so we can get their TxnLineID values.

• We check for response detail data before retrieving it. This data is not guaranteed to be

there, so the check is necessary.

• Because we are touching the line item table, we need to specify fully all of the line

items we want to retain or change. We aren’t changing anything, just inserting a new

line, but we still have to specify all of the TxnLineID values from the original sales

receipt or else they will be dropped from the sales receipt. Each TxnLineID is added in

a separate SalesReceiptLineMod aggregate.

_____ Listing 18-4 Constructing a SalesReceiptMod request in QBFC

Public Sub QBFC_ModSalesReceipt()

Dim SessionManager As QBSessionManager

Set SessionManager = New QBSessionManager

SessionManager.OpenConnection "", "IDN Mod SalesReceipt Sample"

SessionManager.BeginSession "", omDontCare

Dim requestMsgSet As IMsgSetRequest

Set requestMsgSet = SessionManager.CreateMsgSetRequest("US", 5, 0)

' Initialize the message set request's attributes

requestMsgSet.Attributes.OnError = roeStop

'First we query QB for sales receipt transactions within a date range

Dim SalesRecptQuery As ISalesReceiptQuery

Set SalesRecptQuery = requestMsgSet.AppendSalesReceiptQueryRq

'We just want to get the Txn ID and edit sequence so we can do the mod

SalesRecptQuery.IncludeRetElementList.Add ("TxnID")

SalesRecptQuery.IncludeRetElementList.Add ("EditSequence")

SalesRecptQuery.ORTxnQuery.TxnFilter.ORRefNumberFilter.RefNumberRangeFilter.FromRefNumber.

setValue ("23")

Dim responseMsgSet As IMsgSetResponse

Set responseMsgSet = SessionManager.DoRequests(requestMsgSet)

Dim response As IResponse

' Response list contains one response, corresponding to our single request

Set response = responseMsgSet.ResponseList.GetAt(0)

'This is a query, so the response detail is a ret list for sales receipt

Dim SalesRecptRetList As ISalesReceiptRetList

If response.Detail Is Nothing Then

MsgBox "No Detail available"

Modifying a SalesReceipt in qbXML 271

(c) 2013 Intuit Inc. All rights reserved.

Exit Sub

End If

Set SalesRecptRetList = response.Detail

Dim SalesRecptRet As ISalesReceiptRet

'There are potentially many SalesReceipt txns in the retlist: we get the first one

'This is for our convenience: you'll do something smarter or let the user pick

Set SalesRecptRet = SalesRecptRetList.GetAt(0)

'Save the TxnID: we need it for the followup query

Dim TransID As String

TransID = SalesRecptRet.TxnID.getValue

requestMsgSet.ClearRequests

'Get the specific receipt we want complete with all line items

Set SalesRecptQuery = requestMsgSet.AppendSalesReceiptQueryRq

SalesRecptQuery.ORTxnQuery.TxnIDList.Add (TransID)

SalesRecptQuery.IncludeLineItems.setValue (True)

Set responseMsgSet = SessionManager.DoRequests(requestMsgSet)

' Response list contains one response, corresponding to our single request

Set response = responseMsgSet.ResponseList.GetAt(0)

'Need to get the ret list first

If response.Detail Is Nothing Then

MsgBox "No Detail available"

Exit Sub

End If

Set SalesRecptRetList = response.Detail

'From this query, we expect only one SalesReceipt txns in the retlist

'Save the receipt: we'll need it later for its line item TxnIDs

Set SalesRecptRet = SalesRecptRetList.GetAt(0)

requestMsgSet.ClearRequests

' Now build the mod request

Dim SalesRecptMod As ISalesReceiptMod

Set SalesRecptMod = requestMsgSet.AppendSalesReceiptModRq

'Set the properties in the SalesReceipt mod object using data

'from the sales receipt we just grabbed in the last query

SalesRecptMod.TxnID.setValue SalesRecptRet.TxnID.getValue

SalesRecptMod.EditSequence.setValue SalesRecptRet.EditSequence.getValue

SalesRecptMod.TxnDate.setValue ("2005-11-03")

SalesRecptMod.Memo.SetEmpty

SalesRecptMod.SalesRepRef.FullName.SetEmpty

272 Chapter 18: Using SalesReceipt Functionality

(c) 2013 Intuit Inc. All rights reserved.

Dim SalesRecptModLine As ISalesReceiptLineMod

Dim SalesRecptLineRet As IORSalesReceiptLineRet

Dim i As Integer

For i = 0 To SalesRecptRet.ORSalesReceiptLineRetList.Count - 1

Set SalesRecptLineRet = SalesRecptRet.ORSalesReceiptLineRetList.GetAt(i)

Set SalesRecptModLine = SalesRecptMod.ORSalesReceiptLineModList.Append.

SalesReceiptLineMod

SalesRecptModLine.TxnLineID.setValue SalesRecptLineRet.SalesReceiptLineRet.TxnLineID.

getValue

If i = 0 Then

Set SalesRecptModLine = SalesRecptMod.ORSalesReceiptLineModList.Append.

SalesReceiptLineMod

SalesRecptModLine.TxnLineID.setValue "-1"

SalesRecptModLine.ItemRef.FullName.setValue "Metal Panel Assembly"

SalesRecptModLine.Quantity.setValue 2

End If

Next i

' Perform the request and obtain a response from QuickBooks

Set responseMsgSet = SessionManager.DoRequests(requestMsgSet)

'save full xml response for grins

Dim fname As String

Dim xml As String

xml = responseMsgSet.ToXMLString

fname = "XML_output.doc"

Dim fso As New FileSystemObject

Dim ts As TextStream

Set ts = fso.CreateTextFile(fname, True)

ts.Write (xml)

' Close the session and connection with QuickBooks.

SessionManager.EndSession

SessionManager.CloseConnection

End Sub

Querying for SalesReceipts 273

(c) 2013 Intuit Inc. All rights reserved.

Querying for SalesReceipts

Querying for SalesReceipts in qbXML

In Listing 18-5, two sample queries are provided. The first gets a range of sales receipts, all

whose ref number is greater than 23, and specifies that only the TxnID and EditSequence

are to be returned. This query works hand-in-hand with the second query, which takes a

TxnID and and EditSequence to get a full sales receipt record with all the line items.

______Listing 18-5 Sample queries for SaleReceipts

<?xml version="1.0" ?>

<?qbxml version="5.0"?>

<QBXML>

<QBXMLMsgsRq onError = "stopOnError">

<SalesReceiptQueryRq requestID = "0">

<RefNumberRangeFilter>

<FromRefNumber>23</FromRefNumber>

</RefNumberRangeFilter>

<IncludeRetElement>TxnID</IncludeRetElement>

<IncludeRetElement>EditSequence</IncludeRetElement>

</SalesReceiptQueryRq>

</QBXMLMsgsRq>

</QBXML>

<?xml version="1.0" ?>

<?qbxml version="5.0"?>

<QBXML>

<QBXMLMsgsRq onError = "stopOnError">

<SalesReceiptQueryRq requestID = "0">

<TxnID>90-1131042763</TxnID>

<IncludeLineItems>1</IncludeLineItems>

</SalesReceiptQueryRq>

</QBXMLMsgsRq>

</QBXML>

Querying for SalesReceipts in QBFC

The code sample in Listing 18-4 shows a couple of SalesReceiptQuery requests.

Deleting and Voiding SalesReceipts

To delete and void sales receipt transactions, you use TxnDelRq and TxnVoidRq,

respectively, as described in Chapter 10, “Modifying and Deleting Transactions and List

Objects.”

274 Chapter 18: Using SalesReceipt Functionality

(c) 2013 Intuit Inc. All rights reserved.

Notice that this deletes any credit card information (CreditCardTxnInfo) in QuickBooks

only. This does NOT delete any data at QBMS.

Adding a Credit Card Refund Transaction 275

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 19 1

USING CREDIT CARD REFUND FUNCTIONALITY 1

Prior to QuickBooks 2006, QuickBooks provided no transaction specifically for refunds to

customers, for example in the case of returned goods or overpayments. Beginning with

QuickBooks 2006 credit card refund transactions are supported.

You must link the refund to an existing credit memo transaction in QuickBooks.

Notice that via the SDK you can specify one or more of these transactions. In comparison,

the UI limits you to linking one credit transaction per refund.

The refund can be a full refund of the entire amount of the specified credit memo or it can

be a partial refund. (The response to the ARRefundCreditCard Add or Query returns the

amount remaining on each credit for which you are issuing the refund.)

The ARRefundCreditCard* functionality provided by the SDK also supports the credit card

transaction data provided by qbmsXML interaction with QBMS, so that the actual credit

card transaction data can be stored in QuickBooks.

Adding a Credit Card Refund Transaction

Figure 19-1 shows the OSR listing for ARRefundCreditCardAdd.

The CustomerRef is required and must match the customer in the target transactions you

want to link.

The RefundFromAccountRef is the source account from which the refund is made. Typically

this is the default Undeposited Funds account, but you could specify any bank account or

asset account here. This is optional: if you omit this, the Undeposited Funds default account

is used.

The ARAcountRef is also optional. If you omit it, the default Accounts Receivable account

is used. Make sure this account matches the ARAccountRef in the credit memo transactions

you are linking to.

276 Chapter 19: Using Credit Card Refund Functionality

(c) 2013 Intuit Inc. All rights reserved.

Figure 19-1 OSR listing for ARRefundCreditCardAdd

TxnDate and RefNumber are supplied for you automatically, but you can supply your own

values if you want.

The address information is supplied for you via the CustomerRef so normally you need not

add it in the request.

The PaymentMethodRef specifies the type of credit card used in the refund transaction. If

there is credit card data included in the QuickBooks customer information, you can omit

this tag and let QuickBooks supply the card type automatically. If you specify a non-credit

card type here, you’ll get a runtime error.

Memo is available for any notes you want to save with the transaction.

Adding a Credit Card Refund Transaction 277

(c) 2013 Intuit Inc. All rights reserved.

Figure 19-2 shows the remainder of the OSR listing for ARRefundCreditCardAdd:

Figure 19-2 ARRefundCreditCardAdd listing: credit card and linked transactions

The credit card information contained in the CreditCardTxnInfo aggregate is optional, but if

you supply that aggregate, you have to supply both the CreditCardTxnInputInfo and the

CreditCardTxnResultInfo sub aggregates along with their required elements, as shown in

the OSR. Can you supply just any credit card data here? No, the data supplied here must be

data from a qbmsXML refund transaction against the QuickBooks Merchant Service.

Notice that the CreditCardTransType will always be Refund.

This means that you can supply this only if the company has a valid QBMS account and

you use qbmsXML to interact with QBMS for credit card transactions. How can you

determine this in the SDK? Simply do a company query and check the SubscribedServices

aggregate for the QBMS service.

The InputInfo subaggregate is the data from the originating qbmsXML request that effected

the credit card transaction. The ResultInfo sub aggregate is the qbmsXML response to that

request. You include all of this data in this request if you want to save that QBMS

transaction data within QuickBooks. For more information, see the Developer’s Guide for

QuickBooks Merchant Services.

278 Chapter 19: Using Credit Card Refund Functionality

(c) 2013 Intuit Inc. All rights reserved.

If the original QBMS transaction was a qbmsXML 2.0 request or greater, and the qbXML

spec level of your SalesReceiptAdd request is 6.0 or greater, the credit card number must be

masked, that is, all X, except for the last 4 digits.

Notice that including the QBMS transaction data in the request does not result in any

interactions with QBMS or in any attempts to connect to QBMS.

You link this refund to the target credit memo using the RefundAppliedToTxnAdd aggregate.

You must link to at least one of these transactions; you can link to as many as you want.

The TxnID is unique among these transactions, so you don’t (in fact you can’t) specify a

transaction type.

The RefundAmount specifies how much of the linked credit transaction is to be refunded. If

you specify an amount here that is greater than the credit, you’ll get a runtime error.

Adding a Credit Card Refund in QBFC

Listing 19-1 shows how to build the credit card refund request in QBFC. This listing

happens to include credit card transaction data from QBMS but this is not required. The

code for building the refund is pretty straightforward. We don’t do any checks to make sure

we don’t exceed any credit amounts, but you’ll need to do this.

_____ Listing 19-1 Constructing a credit card refund request in QBFC

Public Sub QBFC_AddARRefundCreditCard()

Dim SessionManager As QBSessionManager

SetSessionManager = New QBSessionManager

SessionManager.OpenConnection "", "IDN Add ARRefundCreditCard Sample"

SessionManager.BeginSession "", omDontCare

Dim requestMsgSet As IMsgSetRequest

Set requestMsgSet = SessionManager.CreateMsgSetRequest("US", 5, 0)

' Initialize the message set request's attributes

requestMsgSet.Attributes.OnError = roeStop

' Add the request to the message set request object

Dim ARRefundCCAdd As IARRefundCreditCardAdd

Set ARRefundCCAdd = requestMsgSet.AppendARRefundCreditCardAddRq

'Set the properties in the Refund add object

ARRefundCCAdd.CustomerRef.FullName.setValue ("Jack Williams")

ARRefundCCAdd.RefundFromAccountRef.FullName.setValue ("Undeposited Funds")

ARRefundCCAdd.ARAccountRef.FullName.setValue ("Accounts Receivable")

ARRefundCCAdd.PaymentMethodRef.FullName.setValue ("Visa")

ARRefundCCAdd.Memo.setValue ("Partial refund sample")

Adding a Credit Card Refund Transaction 279

(c) 2013 Intuit Inc. All rights reserved.

'Add optional credit card info from a qbmsXML transaction with QBMS

ARRefundCCAdd.CreditCardTxnInfo.CreditCardTxnInputInfo.CreditCardNumber.

setValue ("4111111111111111")

ARRefundCCAdd.CreditCardTxnInfo.CreditCardTxnInputInfo.ExpirationYear.setValue (2008)

ARRefundCCAdd.CreditCardTxnInfo.CreditCardTxnInputInfo.ExpirationMonth.setValue (11)

ARRefundCCAdd.CreditCardTxnInfo.CreditCardTxnInputInfo.NameOnCard.setValue

("Jack Williams")

ARRefundCCAdd.CreditCardTxnInfo.CreditCardTxnInputInfo.CreditCardTxnType.setValue

ccttRefund

ARRefundCCAdd.CreditCardTxnInfo.CreditCardTxnResultInfo.ResultCode.setValue (0)

ARRefundCCAdd.CreditCardTxnInfo.CreditCardTxnResultInfo.ResultMessage.setValue

("STATUS OK")

ARRefundCCAdd.CreditCardTxnInfo.CreditCardTxnResultInfo.CreditCardTransID.setValue

("V54A60275101")

ARRefundCCAdd.CreditCardTxnInfo.CreditCardTxnResultInfo.MerchantAccountNumber.setValue

("4269281420247209")

ARRefundCCAdd.CreditCardTxnInfo.CreditCardTxnResultInfo.AuthorizationCode.setValue

("185PNI")

ARRefundCCAdd.CreditCardTxnInfo.CreditCardTxnResultInfo.ReconBatchID.setValue

("420050223 MC 2005-02-23 QBMS 15.0 pre-beta")

ARRefundCCAdd.CreditCardTxnInfo.CreditCardTxnResultInfo.PaymentGroupingCode.setValue (4)

ARRefundCCAdd.CreditCardTxnInfo.CreditCardTxnResultInfo.PaymentStatus.setValue

(pssCompleted)

ARRefundCCAdd.CreditCardTxnInfo.CreditCardTxnResultInfo.TxnAuthorizationTime.setValue

"2005-11-01", False

ARRefundCCAdd.CreditCardTxnInfo.CreditCardTxnResultInfo.TxnAuthorizationStamp.setValue

(1109192233)

'Now link two transactions whose TxnID we hardcoded here

Dim RefundAppliedToTxn As IRefundAppliedToTxnAdd

Set RefundAppliedToTxn = ARRefundCCAdd.RefundAppliedToTxnAddList.Append

RefundAppliedToTxn.RefundAmount.setValue (1)

RefundAppliedToTxn.TxnID.setValue ("B0-1131081904")

Set RefundAppliedToTxn = ARRefundCCAdd.RefundAppliedToTxnAddList.Append

RefundAppliedToTxn.RefundAmount.setValue (1)

RefundAppliedToTxn.TxnID.setValue ("9F-1131074959")

' Perform the request and obtain a response from QuickBooks

Dim responseMsgSet As IMsgSetResponse

Set responseMsgSet = SessionManager.DoRequests(requestMsgSet)

‘Save the results to a file for grins. requires Microsoft Scripting Runtime

Dim fname As String

Dim xml As String

xml = responseMsgSet.ToXMLString

280 Chapter 19: Using Credit Card Refund Functionality

(c) 2013 Intuit Inc. All rights reserved.

fname = "XML_request.doc"

Dim fso As New FileSystemObject

Dim ts As TextStream

Set ts = fso.CreateTextFile(fname, True)

ts.Write (xml)

' Close the session and connection with QuickBooks.

 SessionManager.EndSession

SessionManager.CloseConnection

End Sub

Adding a Credit Card Refund in qbXML

Listing 19-2 shows a simple Refund add request with linked credit memos.

_____ Listing 19-2 An ARRefundCreditCardAdd request with two linked credit transactions

<?xml version="1.0" ?>

<?qbxml version="5.0"?>

<QBXML>

<QBXMLMsgsRq onError = "stopOnError">

<ARRefundCreditCardAddRq requestID = "0">

<ARRefundCreditCardAdd>

<CustomerRef>

<FullName>Jack Williams</FullName>

</CustomerRef>

<RefundFromAccountRef>

<FullName>Undeposited Funds</FullName>

</RefundFromAccountRef>

<ARAccountRef>

<FullName>Accounts Receivable</FullName>

</ARAccountRef>

<PaymentMethodRef>

<FullName>Visa</FullName>

</PaymentMethodRef>

<Memo>Partial refund sample</Memo>

<RefundAppliedToTxnAdd>

<TxnID>B0-1131081904</TxnID>

<RefundAmount>1.00</RefundAmount>

</RefundAppliedToTxnAdd>

<RefundAppliedToTxnAdd>

<TxnID>9F-1131074959</TxnID>

<RefundAmount>1.00</RefundAmount>

</RefundAppliedToTxnAdd>

</ARRefundCreditCardAdd>

</ARRefundCreditCardAddRq>

</QBXMLMsgsRq>

</QBXML>

Listing 19-3 shows a Refund add request with credit card transaction data from a preceding

qbmsXML request/response interaction with QBMS.

Adding a Credit Card Refund Transaction 281

(c) 2013 Intuit Inc. All rights reserved.

______Listing 19-3 An ARRefundCreditCardAdd request with QBMS transaction data

<?xml version="1.0" ?>

<?qbxml version="5.0"?>

<QBXML>

<QBXMLMsgsRq onError = "stopOnError">

<ARRefundCreditCardAddRq requestID = "0">

<ARRefundCreditCardAdd>

<CustomerRef>

<FullName>Jack Williams</FullName>

</CustomerRef>

<RefundFromAccountRef>

<FullName>Undeposited Funds</FullName>

</RefundFromAccountRef>

<ARAccountRef>

<FullName>Accounts Receivable</FullName>

</ARAccountRef>

<PaymentMethodRef>

<FullName>Visa</FullName>

</PaymentMethodRef>

<Memo>Partial refund sample</Memo>

<CreditCardTxnInfo>

<CreditCardTxnInputInfo>

<CreditCardNumber>4111111111111111</CreditCardNumber>

<ExpirationMonth>11</ExpirationMonth>

<ExpirationYear>2008</ExpirationYear>

<NameOnCard>Jack Williams</NameOnCard>

<TransactionMode>CardNotPresent</TransactionMode>

<CreditCardTxnType>Refund</CreditCardTxnType>

</CreditCardTxnInputInfo>

<CreditCardTxnResultInfo>

<ResultCode>0</ResultCode>

<ResultMessage>STATUS OK</ResultMessage>

<CreditCardTransID>V54A60275101</CreditCardTransID>

<MerchantAccountNumber>4269281420247209</MerchantAccountNumber>

<AuthorizationCode>185PNI</AuthorizationCode>

<ReconBatchID>420050223 MC 2005-02-23 QBMS 15.0 pre-beta</ReconBatchID>

<PaymentGroupingCode>4</PaymentGroupingCode>

<PaymentStatus>Completed</PaymentStatus>

<TxnAuthorizationTime>2005-11-01T00:00:00</TxnAuthorizationTime>

<TxnAuthorizationStamp>1109192233</TxnAuthorizationStamp>

</CreditCardTxnResultInfo>

</CreditCardTxnInfo>

<RefundAppliedToTxnAdd>

<TxnID>B0-1131081904</TxnID>

<RefundAmount>1.00</RefundAmount>

</RefundAppliedToTxnAdd>

<RefundAppliedToTxnAdd>

<TxnID>9F-1131074959</TxnID>

282 Chapter 19: Using Credit Card Refund Functionality

(c) 2013 Intuit Inc. All rights reserved.

<RefundAmount>1.00</RefundAmount>

</RefundAppliedToTxnAdd>

</ARRefundCreditCardAdd>

</ARRefundCreditCardAddRq>

</QBXMLMsgsRq>

</QBXML>

Querying for ARRefundCreditCard Transactions

When you query for credit card refund transactions and use the entity filter, you must

specify only customer or customer jobs. Other than this, this is a standard query, which is

described in Chapter 8, “Creating Queries.”

Deleting and Voiding ARRefundCreditCard Transactions

To delete and void credit card refund transactions, you use TxnDelRq and TxnVoidRq,

respectively, as described in Chapter 10, “Modifying and Deleting Transactions and List

Objects.”

Notice that this deletes any credit card information (CreditCardTxnInfo) in QuickBooks

only. This does NOT delete any data at QBMS.

What is a Price Level? 283

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 20 1

USING PRICE LEVELS IN TRANSACTIONS 1

This chapter describes price levels: what they are, why they are useful, how they function in

QuickBooks, and what you need to do in your program to support the use of them.

What is a Price Level?

A price level is a List object that is used on a customer/customer job, or on an individual

line item in an invoice, sales receipt, sales order, or credit memo. (This is accomplished by

using the PriceLevelRef aggregate in the Add and Mod requests for each of these supported

objects.)

When applied to customers or customer jobs, the price level allows you to set custom

pricing on a per customer or a per job basis. That is, after you use a price level with a

customer or customer job, QuickBooks automatically uses that custom price as the default

price each time you create an invoice, sales receipt, sales order, or credit memo for that

customer or customer job.

Of course, price levels can also be dynamically applied to the individual line items in an

invoice, sales receipt, sales order, or credit memo: you don’t have to simply accept the

default customer price level.

IMPORTANT

When you apply a price level to a line item, QuickBooks does
not store any information about which price level was used.
That is, after the price level is applied, there is no way to
determine later which price level was applied to the line item.

Notice that if you use price levels on a per line item basis, and have created price levels, the

QuickBooks UI automatically provides support where needed, for example, for each line

item in the Sales Order form, the Rate column is a drop-down list that lets the user select

any of the available price levels.

284 Chapter 20: Using Price Levels in Transactions

(c) 2013 Intuit Inc. All rights reserved.

The Two Types of Price Levels Supported by QuickBooks

There are two types of price levels: Fixed Percent and Per Item. The type is specified at

price level creation time: the type cannot be changed later by a PriceLevelMod operation.

Of these two types, the Fixed Percent type is supported by the QuickBooks Pro tier and

above, while the Per Item type is supported only by the QuickBooks Premier and Enterprise

tiers.

• The Fixed Percent price level modifies any item’s base price by a fixed percentage.

• The Per Item price level supports custom prices on individual items.

NOTE

If an application attempts to use Per Item price levels in QB
Pro, it will receive the error “FEATURE_NOT_ENABLED”
(3250).

Why Are Price Levels Useful?

You need to use price levels any time special prices are needed; for midnight madness sales,

preferred customers, sales-rep discretionary pricing, and so on.

Are Price Levels Automatically Available?

In order for price levels to have any effect, or become available for use in transactions, they

must be enabled in the Sales & Customers preferences for the company file. So, you need

to check for this by using a PreferencesQuery and examine the

SalesAndCustomersPreferences aggregate within the response. In particular, the sub-

aggregate PriceLevels field IsUsingPriceLevels must contain the value True; otherwise

price levels are not available.

Based on this check, your own application can respond appropriately, either by displaying

information to the user and/or disabling your own application’s price-level oriented

features. Notice that your application cannot enable price levels via the SDK.

Using Price Level Functionality in Your Application

The PriceLevel is a List object, so it is manipulated in the same general way as other List

objects. You create one using PriceLevelAdd, modify it using PriceLevelMod (notice that

you cannot modify the type, fixed versus per item), query for price levels using

PriceLevelQuery, and delete a PriceLevel using ListDel. Also, PriceLevel is supported in

the related queries, for example, ListDeletedQuery can provide a list of recently deleted

PriceLevels, CustomerQuery can return the price level (if any) linked to the customer, and

so on.

Using Price Level Functionality in Your Application 285

(c) 2013 Intuit Inc. All rights reserved.

IMPORTANT

When you perform a PriceLevelMod, for the table in a per item
price level, the Mod request should only specify the rows of
the table that are actually changing. There is no need to
specify the details of an existing row that will not change.

Notice that the PriceLevelQuery contains an ItemRef, which allows you to find all price

levels that apply to that item.This is very useful when selecting the price level for an

individual line item because you’ll get a runtime error 3140 if you specify an inapplicable

price level for a given item.

Notice that you use positive values to increase the price from the base price and negative

ones to decrease from the base price.

Similar to adding a group item or invoice line, when you create a per item price level, you

supply a list of PriceLevelPerItem aggregates that reference an Item and supply a custom

price/percent or a percentage adjustment relative to either the standard price, the item cost,

or the currently existing custom price. (This is useful on PriceLevelMod requests.)

Notice that the response for a sales transaction does not contain information on which price

level was used. It only indicates the Rate used for the item.

IMPORTANT

Once a user links a customer to a price level, all sales
transactions for that customer will by default use the item
prices set by the price level. This differs from versions of
QuickBooks prior to 2005, where an invoice entered from the
SDK defaulted to the standard price for each line item (unless
a price was specified).

286 Chapter 20: Using Price Levels in Transactions

(c) 2013 Intuit Inc. All rights reserved.

How to Create a Price Level

In the following subsections, creating a fixed percent price level is described first, then

creating a per item price level is described.

Creating a Fixed Percent Price Level

You can create a Fixed Percent type price level using the following qbXML:

<?qbxml version="4.0"?>

<QBXML>

<QBXMLMsgsRq onError = "stopOnError">

<PriceLevelAddRq requestID = "0">

<PriceLevelAdd>

<Name>Special Customer Discount</Name>

<IsActive>true</IsActive>

<PriceLevelFixedPercentage>-5</PriceLevelFixedPercentage>

</PriceLevelAdd>

</PriceLevelAddRq>

</QBXMLMsgsRq>

</QBXML>

In the above sample qbXML, a price level with the name “Special Customer Discount” is

created with a fixed percentage amount of -5%. This means there will be a 5% reduction of

the Rate (price each) of the sales price of the item line item where this price level is applied

in an invoice, sales order, and so on. The IsActive tag by default is true, so you don’t need

to supply it. It is shown for completeness. In a PriceLevelAdd you might set it to false if

you were preparing for a sale and didn’t want this price level to show up yet. (In a

PriceLeveMod, you would set it to false if you wanted to discontinue a particular discount.)

Figures 20-1, 20-2, and 20-3 show how a user would apply price level to a line in a sales

order or invoice in QuickBooks. The first figure shows the standard item price (Rate) for

the line item, and the total amount. The second figure shows the dropdown list that appears

in the Rate column if Price Levels are enabled in QuickBooks AND if there are any

existing price levels, AND if a price level has NOT been applied to the customer.

In this dropdown list (Figure 20-2), notice the Special Customer Discount price level that

we just created.

In the third figure (20-3), notice that the Rate and Amount have changed after the user

selected Special Customer Discount from the dropdown list of price levels. The Rate

reflects the 5% discount for each item, and the total amount also reflects it.

How to Create a Price Level 287

(c) 2013 Intuit Inc. All rights reserved.

Figure 20-1 A line item before applying a price level: note the rate and amount

Figure 20-2 Applying the level in the QuickBooks UI

Figure 20-3 Line item rate and amount after applying the price level in QuickBooks

What would happen if the price level were applied to the customer? Then the default price

shown in the Rate column (and the total in the Amount column) would automatically adjust

to the price level. The user could still select from the dropdown list of price levels,

however.

Creating a Per Item Price Level

Creating a per item price for an item results in the creation of a custom price for the item

that is visible in the QuickBooks Edit Price Level form. Consequently, you can apply

discounts to this custom price as well as to the item’s cost and standard sales price.

In the per item price level, you can choose between two approaches. You can create a price

level that specifies ONE of the following prices:

• A fixed price for an item or a fixed percentage discount to be applied to an item’s cost

• A discount percentage applied to an item’s cost, standard sales price, or current custom

price

The following sample qbXML shows how to build a per item price level using a discount

percentage applied to an item’s cost.

288 Chapter 20: Using Price Levels in Transactions

(c) 2013 Intuit Inc. All rights reserved.

<?qbxml version="4.0"?>

<QBXML>

<QBXMLMsgsRq onError = "stopOnError">

<PriceLevelAddRq requestID = "0">

<PriceLevelAdd>

<Name>Cost-Plus Sale</Name>

<IsActive>true</IsActive>

<PriceLevelPerItem>

<ItemRef>

<FullName>Bolts</FullName>

<AdjustPercentage>10</AdjustPercentage>

<AdjustRelativeTo>Cost</AdjustRelativeTo>

</PriceLevelPerItem>

</PriceLevelAdd>

</PriceLevelAddRq>

</QBXMLMsgsRq>

</QBXML>

In this sample, the Cost-Plus Sale price level specifies a price for the Bolts item that is 10

percent more than the cost.

How to Apply a Price Level to a Customer

You can apply a price level to a customer when you create the customer (CustomerAddRq)

or when you modify the customer (CustomerModRq). You’ll notice that the customer can

have only one price level applied at a time, however. The following sample qbXML shows

the price level “Cost-Plus Sale” applied to the customer Geraldine Wilson when that

customer is being added to QuickBooks.

<?qbxml version="4.0"?>

<QBXML>

<QBXMLMsgsRq onError = "stopOnError">

<CustomerAddRq requestID = "2">

<CustomerAdd>

<Name>Geraldine Wilson</Name>

<FirstName>Geraldine</FirstName>

<LastName>Wilson</LastName>

<BillAddress>

<Addr1>123 Main St.</Addr1>

<City>Mountain View</City>

<State>CA</State>

<PostalCode>94566</PostalCode>

</BillAddress>

<Phone>650-944-1111</Phone>

<PriceLevelRef>

<FullName>Cost-Plus Sale</FullName>

</PriceLevelRef>

</CustomerAdd>

</CustomerAddRq>

</QBXMLMsgsRq>

</QBXML>

How to Apply a Price Level to a Line Item 289

(c) 2013 Intuit Inc. All rights reserved.

How to Apply a Price Level to a Line Item

If you want to use the SDK to apply price levels to individual line items in the various types

of transactions, for example, invoice, sales orders, sales receipts, and so on, you can do so

by including a PriceLevelRef in the line item Add or Mod aggregate. For example, in an

InvoiceAdd request, you can specify a price level for an invoice line item inside the

InvoiceLineAdd aggregate as follows:

<InvoiceLineAdd>

<ItemRef>

<FullName>Bolts</FullName>

</ItemRef>

<Desc>Bag O’ Bolts</Desc>

<Quantity>10</Quantity>

<PriceLevelRef>

<FullName>Special Customer Discount</FullName>

</PriceLevelRef>

</InvoiceLineAdd>

It is important to note that for per item price levels, the item inside the ItemRef above must

support the price level inside the PriceLevelRef. (For Fixed Percent price levels, this is not

an issue.)

Notice that the Amount tag has been omitted. This is calculated by QuickBooks

automatically from the Rate, or, in this case the Rate as automatically adjusted by the price

level.

290 Chapter 20: Using Price Levels in Transactions

(c) 2013 Intuit Inc. All rights reserved.

 291

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 21 1

USING BILLING RATES TO BILL FOR TIME 1

Billing rates (called billing rate levels in the UI, but simply billing rates in this document)

are used in certain QuickBooks editions to allow you to charge different rates for a service

item based on who does the work (employee, or vendor, or other name). This feature

supports scenarios such as allowing you to bill at different rates for employees doing the

same service but with different experience levels. Another scenario supported is the ability

to charge different rates for employees based on the difficulty of a task.

This chapter describes the use of billing rates first from the perspective of the QuickBooks

UI, to show the workflow that is supported by this feature, and any limitations of the

feature when exercised by the SDK requests. The chapter also shows you how to build the

BillingRateAdd request in qbXML and in QBFC.

Which QuickBooks Editions Support Billing Rates?

The billing rates feature is currently available only in certain flavors of QuickBooks

Premier and Enterprise:

• Contractor

• Professional Services

• Accountant

Key SDK Limitations You Need to Know Before You Start

One key limitation of the SDK’s support of the billing rates feature is that you cannot

automate the insertion of billable time charges directly into invoices via QB SDK requests.

Only the QuickBooks interactive user can do that because it entails choosing charges from a

list of outstanding customer charges at the time of invoice creation, and the company owner

(the QuickBooks interactive user) must remain in control of this.

Another limitation in the SDK is that you can assign Billing Rates only to employees and

vendors, whereas in the UI, you can assign Billing Rates to employees, vendors, and other

names.

292 Chapter 21: Using Billing Rates To Bill For Time

(c) 2013 Intuit Inc. All rights reserved.

What Happens If I Use Both Price Levels and Billing Rates?

It is possible for a customer to have a price level that changes the standard rate assigned to

a service item. What happens when you have billable time against that customer using the

same service item and you also have a billing rate that applies to that service item? In the

case where there is both a customer price level and a billing rate operating on a service item

price, the price level always “wins”. Only the price level is used in this case.

What is a Billing Rate?

A billing rate is a custom price that overrides the standard price set for a service item, based

on the entity that does the work (employee, vendor, or other name). The billing rate is

attached to the entity and is in effect when that entity is assigned to a time transaction.

There are two ways that this rate override works. You can set up a billing rate to do a

simple override of ALL service item rates by imposing a fixed rate that will override all the

standard rates. Or, you can set up the billing rate to overide specific service items (one or

more) by a fixed amount or percentage.

IMPORTANT

The kind of rate you have on the service item determines the
kind of billing rate you may have on that item. That is, if you
attempt to set the Billing Rate to a percentage for a service
item that has an amount for the Rate, you will get an error.

What is the Workflow? How Do I use a Billing Rate?

The core transaction in the billing rate workflow is the time tracking transaction because

that is where the billable time charges are recorded against the customer. From the UI

perspective, this transaction is recorded via the Weekly Timesheet form or the Time/Enter

Single Activity form in the UI. The easiest way to arrive at these forms is to click on the

Enter Time icon in the QuickBooks Home page navigator. (In the SDK, you use the

TimeTrackAdd request.) Figure 21-1 shows the Time/Enter SingleActivity form.

A Detailed Look at the Billing Rates Workflow 293

(c) 2013 Intuit Inc. All rights reserved.

Figure 21-1 Entering a time tracking transaction

The time transaction, not surprisingly, tracks time duration of billable and unbillable

activities within the specified timeframe. In the time transaction, you specify the customer,

the time duration, the service item that identifies the type of activity performed, the entity

that did the work (employee, vendor, or other name), and so forth as shown in the circled

items in Figure 21-1. Notice that you can choose to make the time billable or not.

NOTE

One scenario where you would not make the time billable
would be if you were tracking vendor time but were passing
the vendor’s time bills directly to the customer: in this case
you wouldn’t want to make the time billable as that would
result in double billing.

A Detailed Look at the Billing Rates Workflow

The billing rate workflow is as follows:

294 Chapter 21: Using Billing Rates To Bill For Time

(c) 2013 Intuit Inc. All rights reserved.

1. Create one or more service items with a standard price/rate for the task(s) for which

you want to bill time.

2. Create billing rates that express the pricing structure you want to apply to those service

items. (A billing rate is always linked to a service item.)

3. Assign the billing rates as desired to your employees, vendors, and/or other names.

4. Track the time in a time transaction (single activity form or weekly timesheet form).

This transaction specifies the customer to be billed, the service item, the entity doing

the work.

5. Invoice the customer for the billable time charges, selecting from the list of the

customer’s billable time charges when prompted.

We’ll cover each of these aspects of the workflow in more detail in the following sections.

Creating Service Items

A service item is an item on the item list. You can get to the new item form from the main

QuickBooks pulldown menu, Lists->Item List->Item->New. Select Service as the item type

as shown in Figure 21-2.

A Detailed Look at the Billing Rates Workflow 295

(c) 2013 Intuit Inc. All rights reserved.

Figure 21-2 New Service Item form

The Rate field shows the value that will be impacted by the billing rate, when that is

applied in the time transaction. Notice that you must assign an income account to the

service item.

Also, notice the checkbox labelled “This service is used in...or is performed by a

subcontractor.” You check this if you are creating a service item for work to be performed

by a vendor. Figure 21-3 shows the additional fields you need to supply for vendor service

items.

296 Chapter 21: Using Billing Rates To Bill For Time

(c) 2013 Intuit Inc. All rights reserved.

Figure 21-3 New Service Item form for vendor service items

In this usage, in addition to the income account used for the money coming in as a result of

the service item, you need to specify an expense account, which is used for the money

going out to the vendor to pay for that work.

Creating a Service Item in the SDK

In the SDK, you would simply use the ItemServiceAdd request, whose fields are listed in

the OSR as shown in Figure 21-4:

A Detailed Look at the Billing Rates Workflow 297

(c) 2013 Intuit Inc. All rights reserved.

Figure 21-4 Creating a new service item in the SDK

Notice that to fill out a service item for employees, you would use the SalesOrPurchase

aggregate, whereas you’d use the SalesAndPurchase aggregate to specify a service item to

be performed by a vendor.

qbXML Code Sample: Adding a Service Item

The following qbXML request adds a service item with the name “Pump repair” and a rate

of 50.

298 Chapter 21: Using Billing Rates To Bill For Time

(c) 2013 Intuit Inc. All rights reserved.

<?xml version="1.0" ?>

<?qbxml version="6.0"?>

<QBXML>

<QBXMLMsgsRq onError = "stopOnError">

<ItemServiceAddRq requestID = "0">

<ItemServiceAdd>

<Name>Pump Repair</Name>

<SalesOrPurchase>

<Desc>repair small pumps</Desc>

<Price>50.00</Price>

<AccountRef>

<FullName>Service Income</FullName>

</AccountRef>

</SalesOrPurchase>

</ItemServiceAdd>

</ItemServiceAddRq>

</QBXMLMsgsRq>

</QBXML>

QBFC Code Sample: Adding a Service Item

The following VB code is a one-shot program that adds the same service item as the above

qbXML snippet. Notice the use of ORSalesPurchase.SalesOrPurchase. If we wanted this

service item to be used by vendors we would have used

ORSalesPurchase.SalesAndPurchase.

Dim SessionManager As QBSessionManager

Set SessionManager = New QBSessionManager

SessionManager.OpenConnection "", "IDN ItemService Add Sample"

SessionManager.BeginSession "", omDontCare

Dim ItemServiceAddSet As IMsgSetRequest

Set ItemServiceAddSet = SessionManager.CreateMsgSetRequest("US", 6, 0)

Dim ServiceItemAdder As IItemServiceAdd

Set ServiceItemAdder = ItemServiceAddSet.AppendItemServiceAddRq

ServiceItemAdder.Name.setValue "Pump Repair"

ServiceItemAdder.ORSalesPurchase.SalesOrPurchase.Desc.setValue "repair small pumps"

ServiceItemAdder.ORSalesPurchase.SalesOrPurchase.ORPrice.Price.setValue 50

ServiceItemAdder.ORSalesPurchase.SalesOrPurchase.AccountRef.FullName.setValue

"Service Income"

Dim ItemServiceAddResp As IMsgSetResponse

Set ItemServiceAddResp = SessionManager.DoRequests(ItemServiceAddSet)

SessionManager.EndSession

SessionManager.CloseConnection

A Detailed Look at the Billing Rates Workflow 299

(c) 2013 Intuit Inc. All rights reserved.

Creating Billing Rates in the UI

In the UI, you can open the billing rate form from the main QuickBooks menubar: Lists-

>Billing Rate Level List->Billing Rate Level. Figure 21-5 shows that form:

Figure 21-5 New billing rate form

In the form above we selected a fixed hourly rate. This means that whoever has this billing

rate assigned, employee, vendor, or other name, that fixed rate will override any service

item rate used in the billable time transaction.

If you wanted to override a smaller subset of the service items, you would choose the

second option: Custom Hourly Rate per Service Item (Figure 21-6):

300 Chapter 21: Using Billing Rates To Bill For Time

(c) 2013 Intuit Inc. All rights reserved.

Figure 21-6 Billing rate form with Custom Hourly rate selected

Notice that you can select one or more service items in the list. Also, notice that you can

specify a fixed rate for each service item (overriding the standard rate) by entering values in

the Billing Rate column, as shown in the figure.

What if you wanted to charge a percentage higher or lower than the standard rate? To do

that, you would click Adjust Selected Rates and specify the desired adjust higher or lower

(Figure 21-7):

A Detailed Look at the Billing Rates Workflow 301

(c) 2013 Intuit Inc. All rights reserved.

Figure 21-7 Adjusting service item rates higher or lower by percentage

Creating Billing Rates in the QB SDK

The follow two examples show how to add Billing Rates using the BillingRateAdd request.

Creating Billing Rates Using qbXML

The following qbXML builds a billing rate called “Junior Level” which applies to the

“Pump Repair” service item. The billing rate is applied to the standard rate, giving a 50%

discount to the standard rate. Notice that to obtain a lower rate than the standard, you

specify a negative number in the AdjustPercentage field: -50 means 50% lower than the

standard rate. A value of 50 would mean 50% higher.

<?xml version="1.0" ?>

<?qbxml version="6.0"?>

<QBXML>

<QBXMLMsgsRq onError = "stopOnError">

302 Chapter 21: Using Billing Rates To Bill For Time

(c) 2013 Intuit Inc. All rights reserved.

<BillingRateAddRq requestID = "0">

<BillingRateAdd>

<Name>Junior Consultant Level</Name>

<BillingRatePerItem>

<ItemRef>

<FullName>Pump Repair</FullName>

</ItemRef>

<AdjustPercentage>-50.0</AdjustPercentage>

<AdjustBillingRateRelativeTo>StandardRate</AdjustBillingRateRelativeTo>

</BillingRatePerItem>

</BillingRateAdd>

</BillingRateAddRq>

</QBXMLMsgsRq>

</QBXML>

Creating Billing Rates Using QBFC

The following VB sample is a one-shot program that does the same thing as the qbXML

sample above, building a billing rate called “Junior Level” that applies to the “Pump

Repair” service item.

Again, notice the billing rate is applied to the standard rate, giving a 50% discount to the

standard rate because it is a negative number in the AdjustPercentage field. To specify a

higher rate than the standard, you would specify a positive number in the AdjustPercentage

field.

Dim SessionManager As QBSessionManager

Set SessionManager = New QBSessionManager

SessionManager.OpenConnection "", "IDN BillingRate Add Sample"

SessionManager.BeginSession "", omDontCare

Dim BillingRateAddSet As IMsgSetRequest

Set BillingRateAddSet = SessionManager.CreateMsgSetRequest("US", 6, 0)

Dim BillingRateAdder As IBillingRateAdd

Set BillingRateAdder = BillingRateAddSet.AppendBillingRateAddRq

BillingRateAdder.Name.setValue "Junior Consultant Level"

Dim MyItem As IBillingRatePerItem

Set MyItem = BillingRateAdder.ORBillingRate.BillingRatePerItemList.Append()

MyItem.ItemRef.FullName.setValue "Pump Repair"

MyItem.ORBillingRateItem.BillingRateAdjustment.AdjustBillingRateRelativeTo.setValue

abrrtStandardRate

MyItem.ORBillingRateItem.BillingRateAdjustment.AdjustPercentage.setValue -50

Dim BillingRateAddResp As IMsgSetResponse

Set BillingRateAddResp = SessionManager.DoRequests(BillingRateAddSet)

SessionManager.EndSession

SessionManager.CloseConnection

A Detailed Look at the Billing Rates Workflow 303

(c) 2013 Intuit Inc. All rights reserved.

Assigning Billing Rates to Employees, Vendors, Other Names

A billing rate takes effect only if it is assigned to an entity involved in a billable time

transaction. Assigning the billing rate works similarly for employees, vendors, and other

names, so we’ll only describe the employee, to keep our story short. (Again, remember that

in the SDK, you won’t be able to assign billing rates to an Other Name entity.)

To assign a billing rate, open the Employee form. You get there by clicking on the

Employee center icon, then clicking on an existing employee name or clicking on the New

Employee button, if you are adding a new employee. The form looks like this (once you

click on the Additional Info tab, which is where you assign a billing rate):

Figure 21-8 Assigning a billing rate to an employee

Notice that you can assign only one billing rate to an entity.

304 Chapter 21: Using Billing Rates To Bill For Time

(c) 2013 Intuit Inc. All rights reserved.

Assigning a Billing Rate in the SDK

In the SDK, you can assign a billing rate to an employee or vendor in the EmployeeAdd,

EmployeeMod, VendorAdd, and VendorMod requests. You simply use a BillingRateRef

aggregate in those requests to add the billing rate. You can add only one billing rate per

entity. We won’t bother with sample code here because of its simplicity. Take a look at the

OSR for details on building Employee or Vendor requests.

Using Billing Rates in Time Transactions

The only way billing rates take effect is in a billable time transaction. However, the heading

to this section is a bit of a misnomer because you don’t directly use billing rates in a time

transaction. Instead, they are applied indirectly, by specifying the entity doing the billable

time (e.g., employee, vendor) and by specifying the service item.

In the UI, you can enter time either in a weekly timesheet, or in the single activity form

shown below (Figure 21-9):

Figure 21-9 The single activity time form

A Detailed Look at the Billing Rates Workflow 305

(c) 2013 Intuit Inc. All rights reserved.

The Name field in the figure above is the entity doing the work. You can select a name

from the list. (By the way, only employees, vendors, and other names are on that list.) If the

entity name you select has a billing rate assigned, it will be applied to the service item

specified in the transaction in the Service Item field. Checking the Billable checkbox means

the transaction will result in time charges for the customer specified in the customer:job

field.

Time Transactions in the SDK

In the SDK, you use the TimeTxnAdd/TimeTxnMod requests, which are more like the

single activity form. Time Transactions are described in another chapter in this document,

so we won’t cover any SDK details here.

Invoicing Customers for Billable Time (UI Only)

For the sake of completeness, we’ll cover the invoicing process here, where billable time

charges are added to a customer invoice. There is currently no way to use the SDK to insert

billable time charges into an invoice.

During invoice creation, when you specify a customer you are prompted to include any

outstanding time charges (Figure 21-10):

306 Chapter 21: Using Billing Rates To Bill For Time

(c) 2013 Intuit Inc. All rights reserved.

Figure 21-10 Billable time charges prompt during invoicing

If you accept the prompt to add the charges, you see a list of outstanding billable charges

(Figure 21-11):

A Detailed Look at the Billing Rates Workflow 307

(c) 2013 Intuit Inc. All rights reserved.

Figure 21-11 Billable time and costs

You simply select as many of the charges as you want: each will become a separate line

item in the invoice. Notice that the rate that appears in the invoice Rate column is the

standard service item charge if no billing rates are in effect for a billable charge, and the

billing rate charge if billing rates apply. (That is, if the entity performing the billable time

had a billing rate assigned.)

308 Chapter 21: Using Billing Rates To Bill For Time

(c) 2013 Intuit Inc. All rights reserved.

Impact of Multicurrency on Existing Applications 309

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 22 1

USING THE MULTICURRENCY FEATURE IN THE SDK 1

Starting with QuickBooks 2009 (US version) and qbXML spec 8.0, the QB SDK supports

the QuickBooks multicurrency feature. For full information on how this feature works,

please consult the in-product help for QuickBooks.

In this chapter we’ll briefly overview the QuickBooks multicurrency feature from the

perspective of the SDK. We’ll cover the multicurrency impact on company preferences,

transactions, list objects and reports.

Impact of Multicurrency on Existing Applications

If your users are using QB 2009 and have multicurrency turned on, your application can be

affected by multicurrency even if your application does not take advantage of the 8.0

features and issues only requests using qbXML spec 7.0 and older.

Here are the new behaviors that impact your app:

• Balances for customers and vendors, if they are set up with foreign currency, have the

balance amount in that currency and that balance amount will fluctuate when exchange

rates change.

• For transactions involving a foreign entity with foreign currency, transaction amounts

are in that foreign currency. QuickBooks also tracks this in your home currency (say

USD). However, that home currency is CALCULATED from the foreign amount using

the current exchange rate, which can fluctuate.

• When a transaction occurs using a foreign currency for the first time, where there is an

ARAccountRef and/or APAccountRef, QuickBooks will automatically create and use a

foreign AR and/or AP account with the following FullName nomenclature:

> Accounts Payable - <CurrencyCode>

Accounts Receivable - <CurrencyCode>

for example, if our transaction was in Japanese Yen, this is the account that would

have to be referenced:

Accounts Receivable - JPY

Thus, if your application explicitly specifies a different AR or AP account it can

fail when doing the transaction.

These are issues you need to be aware of.

310 Chapter 22: Using the Multicurrency Feature in the SDK

(c) 2013 Intuit Inc. All rights reserved.

Company Preferences and Multicurrency

You cannot set multicurrency-related preferences from the SDK. That has to be done in the

UI.

By default company files are created with multicurrency turned off. To turn multicurrency

on you have to use the QuickBooks UI with the company file open. From the main

menubar, Edit->Preferences->Multiple Currencies->Yes, I use more than once currency.

Once you turn multicurrency on for that company file, you won’t be able to turn it off ever

again. There’s a prompt notifying you about this when you go to turn this on.

Next, you’ll need to specify the Home Currency, again you must do this in the UI, in the

preferences as noted above. Once you set the Home Currency, you will not be able to

change it later.

Getting Multicurrency and Home Currency from PreferencesQuery

You can use the SDK to get the current company file settings for multicurrency by doing a

PreferencesQuery using qbXML 8.0 or greater, you’ll get back a MultiCurrencyPreferences

aggregate that contains the IsMultiCurrencyOn boolean and HomeCurrencyRef that

indicates the home currency used with this company file.

QuickBooks Currencies/Exchange Rates and the SDK

To understand the multicurrency feature, you need to know about

• ““Built-in” Vs. User Defined Currencies”

• “Active Vs. Inactive Currencies”

• “How Do You Set Currency Exchange Rates?”

• “What Happens in Transactions When You Change Exchange Rate?”

“Built-in” Vs. User Defined Currencies

There are two “categories” of currencies supported by QuickBooks: QuickBooks’ own

extensive list of built-in currencies and currencies added by the QuickBooks user, which are

called user-defined currencies. ((Currencies can be added either in the UI or using the SDK

CurrencyAdd request.)

Both types of currencies show up in the UI Currency List or from the list obtained through

the SDK’s CurrencyQuery request. In the Ret from the Currency Query, each currency is

identified as built-in (the IsUserDefinedCurrency field is set to false) or as user-defined (the

IsUserDefinedCurrency field is set to true).

Multicurrency Effect on Transaction Amounts and Balances 311

(c) 2013 Intuit Inc. All rights reserved.

Active Vs. Inactive Currencies

Although the built-in currency list is extensive, you’ll notice that only a few show up in the

various picklists in QuickBooks. That’s because only those few are active by default. You

can change any of these to active (or from active to inactive) either in the UI or using the

SDK’s CurrencyMod request.

When you create a currency using CurrencyAdd, the currency by default is active.

How Do You Set Currency Exchange Rates?

You can manually set the exchange rate for a currency itself by editing the currency in the

UI, not through the SDK. However, there is a quasi-automatic rate update feature in

QuickBooks that the user can invoke by clicking (from the main menubar) List->Currency

List->Activities->Download Latest Exchange Rates, which automatically fetches the

currency rates for all built-in ACTIVE currencies over the Internet. This feature does not

update user-defined currencies (these must be updated manually) and this feature is not

available through the SDK.

The exchange rate setting for a currency is used by default when you add a transaction,

either in UI or via SDK. However, these default exchange rates can be overridden by

supplying a different exchange rate in the transaction, both in the UI and in the SDK

through the ExchangeRate field.

What Happens in Transactions When You Change Exchange Rate?

When you change the exchange rate on transactions, the foreign value stays the same and

the value in your home currency changes. Using the SDK, you can update the foreign price

by doing a Mod on the transaction where you specify the latest exchange rate and then re-

specify all of the transaction lines.

Multicurrency Effect on Transaction Amounts and Balances

QuickBooks keeps track of the line item amounts in both foreign and home currency, with

the home currency amount calculated from the foreign amount using the exchange rate in

effect for that transaction (foreign amount X exchange rate).

Multicurrency Effect on List Objects Amounts and Balances

Amount balances for list objects (for example account, customer, and vendor) are in the

currency associated with that account, customer, or vendor, and fluctuate based on the

exchange rate.

312 Chapter 22: Using the Multicurrency Feature in the SDK

(c) 2013 Intuit Inc. All rights reserved.

Multicurrency Effects on Reports

All amounts in Reports have values expressed in home currency amounts, due to required

accounting and reporting to government agencies.

ARAccountRef/APAccountRef Guidelines

Prior to QuickBooks 2009, developers were advised to explicitly supply the optional AP

and AR account references instead of using the default Accounts Payable and Accounts

Receivable. This advice was given to help developers avoid the scenario of mismatched AP

and/or AR accounts when one transaction was linked to another.

With QuickBooks 2009 the ground has changed significantly due to the way QuickBooks

does accounting for foreign currencies. QuickBooks automatically creates a new AP and/or

AP account the first time a foreign transaction occurs in a given foreign currency. For

example, for a new Invoice to a Japanese customer this AR account is created and used:

Accounts Receivable - JPY

So if you were to do an InvoiceAdd to that customer, you MUST either not specify the

ARAccountRef (the SDK will automatically use the correct one) or you must refer to that

new AR account explicitly--you cannot just use some other account.

For transactions that do not reference any other transaction, it is easier to not supply the AR

or AP accountRef and let the defaults be used.

Impact of Multi-Location Inventory on Existing Applications 313

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 23 1

USING THE MULTI-LOCATION INVENTORY FEATURE IN THE SDK 1

Starting with QuickBooks Enterprise v11 (2011 - US version) and qbXML spec 10.0, the

QB SDK supports the QuickBooks multi-location inventory feature. For full information on

how this feature works, please consult the in-product help for QuickBooks.

In this chapter we’ll briefly overview the QuickBooks multi-location inventory feature from

the perspective of the SDK. We’ll cover the multi-location inventory impact on company

preferences, transactions, list objects and reports.

Impact of Multi-Location Inventory on Existing Applications

If your users are using Enterprise v11 and have multi-location inventory turned on, your

application can be affected by multi-location inventory even if your application does not

take advantage of the 10.0 features and issues only requests using qbXML spec 8.0 and

older.

Here are the new behaviors that impact your app:

• Sites will be set to UnspecifiedSite, if SDK version used is less than 10.0.

These are issues you need to be aware of.

Company Preferences and Multi-Location Inventory

You cannot set multi-location inventory related preferences from the SDK. That has to be

done in the UI.

By default company files are created with multi-location inventory turned off. To turn

multi-location inventory on you have to use the QuickBooks UI with the company file

open. From the main menubar, Edit->Preferences->Item & Inventory->Company tab->

Select Advanced Inventory is enabled.

Getting Multi-Location Inventory from PreferencesQuery

You can use the SDK to get the current company file settings for multi-location inventory

by doing a PreferencesQuery using qbXML 10.0 or greater, you’ll get back a

MultiLocationInventoryPreferences aggregate that contains the

IsMultiLocationInventoryAvailable and IsMultiLocationInventoryEnabled boolean that

indicates if multi-location inventory is used with this company file.

314 Chapter 23: Using the Multi-Location Inventory Feature in the SDK

(c) 2013 Intuit Inc. All rights reserved.

InventorySite features for Multi-Location Inventory

InventorySiteAdd:

A new inventory site can be added to the Inventory Site List via SDK

1. For this feature to work via SDK, the preference that allows inventory items to be in

multiple sites has to be turned on.

2. The only required field to add a site is the Name field. This name has to be unique: all

the elements in this list must have unique names.

3. The address block of the Inventory Site List emulates that of the Customer List.

InventorySiteMod:

An already existing inventory site can be modified through this request.

1. Like all other list modify requests, this too requires the list ID and edit sequence of the

element being modified.

2. The name of an element can be changed as long as the modified name isn’t already in

use by another element.

3. If the ‘IsDefaultSite’ is set to true for an element, then it can be made false only by

setting the <IsDefaultSite> tag true for another element in the list. By sending

<IsDefaultSite>false</IsDefaultSite> for the site will not have any effect for a site whose

<IsDefaultSite> tag is already true.

InventorySiteQuery:

FullName, ActiveStatus, From & To ModifiedDate, NameFilter, NameRageFilter are

available as filters.

Transfer Inventory Transactions Feature

This SDK request to expose the "Transfer Inventory" feature. This feature is a transaction

that has been introduced as a part of Multi Location Inventory.

The SDK functionality includes ADD, MOD, DEL & QUERY requests.

This new set of requirements allows the user to transfer inventory from one site to another

in different locations.

Transfer Inventory Add:

1. This request requires "To" & "From" sites and one entry in the transaction line.

2. It also has the provision to set External GUID

Transfer Inventory Mod:

Site Attributes for Transaction with Multi-Location Inventory 315

(c) 2013 Intuit Inc. All rights reserved.

1. It allows the modification of the transaction body and transaction lines.

2. If the transaction line isn't explicitly mentioned in the modline aggregate, the transaction

is deleted

Transfer Inventory Query

Standard filters and Site Filter are available.

Site Attributes for Transaction with Multi-Location Inventory

Applying Site to transactions through SDK, when MLI is turned on.

Site can be set to the transactions during with Add Request and Modify Request.

The <InventorySiteRef> tag is currently supported for Line Items only.

For Group Items, we cannot explicitly specify the site, in this case, UnSpecifiedSite will be

set.

For Invoice, CreditMemo, Check, Bill, ItemReceipt, BuildAssembly, SalesReceipt,

CreditCardCharge, CreditCardCredit, VendorCredit, Charge, InventoryAdjustment:

1) For Add /Mod Request, the Site passed with <InventorySiteRef> tag will be applied to

the transactions once it is saved.

2) If there are more than one <InventorySiteRef> aggregates, SDK will set Site for all the

transactions.

3) Transaction Add / Mod would succeed, even if Site is not specified, but it will set the

Site to UnspecifiedSite. The SDK response is created with the Transaction Ret, which

includes the details of Site.

4) In a transaction, if quantity is negative, then that transaction becomes non-posting, hence

Site will be treated as an optional field.

5) For Charge, BuildAssembly, InventoryAdjustment transactions, the Site will be provided

in header and will be copied to all the Line Items.

6) For all other transactions, Site will be provided in the Line Items.

For Estimate, PurchaseOrder and SalesOrder:

1) Transactions are non-posting, so Site is not a mandatory field.

2) For PurchaseOrder transaction, the Site will be provided in header and will be copied to

all the Line Items.

316 Chapter 23: Using the Multi-Location Inventory Feature in the SDK

(c) 2013 Intuit Inc. All rights reserved.

Multi-Location Inventory Support for Group Items

This functionality has not been implemented. Calls to this request will return as

unsupported.

 317

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 24 1

USING THE QUICKBOOKS VEHICLE MILEAGE FEATURE 1

In QuickBooks, vehicle mileage tracking is trip-based, with each trip and its mileage

entered as a separate transaction in QuickBooks, with QuickBooks automatically

calculating the resulting mileage costs based on user supplied rates. When you need to see

the information accumulated from these transactions, you can run the Mileage by Vehicle or

Mileage by Job reports (Figure 24-1 on page 317).

Figure 24-1 Mileage transactions and mileage expense reports

In addition to accumulating and generating data for reports, another way to use the vehicle

mileage feature is to use it in conjunction with invoices to bill customers for mileage-

related charges. To use the feature in this way you simply make the transaction billable and

add a little more information to the vehicle mileage transaction, such as the customer to be

charged and the item used to set the billable mileage rate (Figure 24-2 on page 318).

318 Chapter 24: Using the Quickbooks Vehicle Mileage Feature

(c) 2013 Intuit Inc. All rights reserved.

bi

Figure 24-2 Billable mileage transaction

Keep in mind that the tax mileage rate is completely unrelated to and unaffected by the

billable mileage rate, and cannot be set via the SDK. For that reason, QuickBooks provides

two separate mileage reports: Mileage by Vehicle, which reports only the tax-related

vehicle mileage and mileage expense, and Mileage by Job, which tracks both non billable

and billable mileage (along with the billable charges).

Key Limitations of QB SDK Support for Vehicle Mileage

One key limitation of the SDK’s support of this feature is that you cannot automate the

insertion of billable mileage charges directly into invoices via QB SDK requests. Only the

QuickBooks interactive user can do that because it entails choosing charges from a list of

outstanding customer charges at the time of invoice creation, and the company owner (the

QuickBooks interactive user) must remain in control of this.

Another limitation, which we have already mentioned, is that the mileage rate used to

calculate mileage expense for the tax agency (such as the IRS) can only be set in the

QuickBooks UI, via the Mileage Rates button in the Mileage entry form. Only the billable

mileage rate can be specified via the QB SDK, by setting the amount in the item (service

item or other charge item) you use for mileage charges.

Finally, the Vehicle Mileage Mod operation is currently not supported, whereas you can

modify a vehicle mileage transaction in the UI.

How the Vehicle Mileage Feature Works 319

(c) 2013 Intuit Inc. All rights reserved.

How the Vehicle Mileage Feature Works

The best way to see how the mileage feature works is to look at the QuickBooks UI. Figure

24-3 on page 319 shows the Vehicle Mileage entry form, which is where you create the

mileage transactions in the UI.

Figure 24-3 The vehicle mileage edit form

We’ll describe most of the fields in the following paragraphs, at least, those fields that need

some description beyond what’s obvious in the UI form.

Vehicle. You must always specify a vehicle. In the UI , a dropdown list contains all of the

vehicles in the vehicle list. You can choose one or create a new vehicle by selecting New

within the list. The SDK differs slightly, as you use the VehicleRef element to specify the

vehicle, and the vehicle must already exist in the QuickBooks company.

Trip Start Date/End Date. This is an optional field. In the UI, the default is the current

date, and this is always supplied if you don’t supply a different date. In the SDK, this

corresponds to the elements TripStartDate and TripEndDate. If you omit either or both of

these, the current date will be supplied for the omitted element(s).

Odometer Start/Odometer End/Total Miles. In the UI, you can specify values for all

three of these fields, as long as the total miles matches the QuickBooks-calculated value for

Odometer End minus Odometer Start. In the SDK, in the VehicleMileageAdd request, you

can specify either the Odometer Start and End or you can specify Total Miles, but you

320 Chapter 24: Using the Quickbooks Vehicle Mileage Feature

(c) 2013 Intuit Inc. All rights reserved.

cannot specify both, since doing so results in a parser error. The VehicleMileageAdd

elements corresponding to these UI fields are as you would expect: OdometerStart,

OdometerEnd, and TotalMiles.

Billable. One of the key choices you make when filling out this form, or doing the

equivalent in the SDK, is whether a customer is to be charged for the mileage.

If a customer is to be charged, check the Billable checkbox in the upper right of the form. In

the SDK, set the BillableStatus element in the VehicleMileageAdd request to Billable. Then

specify the customer to be billed and the item used to set the charged mileage rate.

QuickBooks will save the tax related expense data, and will also save the mileage charge as

an outstanding time or cost for that customer.

If you don’t intend to charge the customer, in the UI leave the checkbox unchecked. In the

SDK, set the BillableStatus to NotBillable. You can omit customer and item, or you can

optionally supply the customer and item, if for some reason you want to track this in the

Mileage By Job detail report under that supplied customer. If you supply customer and item

in a non billable transaction, the entry will be listed in the Mileage by Job detail report as

Non Billable and no customer charge will be made.

Customer:Job. You must specify a customer if you check the Billable checkbox or do the

equivalent in the VehicleMileageAdd request by setting BillableStatus to Billable.The UI

control here is a dropdown list containing all of the customers in the customers list. You can

create a new customer by selecting New within the list. In the VehicleMileageAdd request

you use the CustomerRef element to specify the customer, and the customer must already

exist in the QuickBooks company.

The billable charge resulting from this mileage transaction will be saved in QuickBooks as

an outstanding Billable Time and Cost for that customer. The next time an invoice is

created for that customer in the UI, the QuickBooks user will be prompted to add that

outstanding charge to the invoice. Notice that no such prompt will occur for invoices

created via the SDK, nor will you be able to insert any of these outstanding charges into the

invoice via the SDK.

Item. You must specify an item if you check the Billable checkbox or do the equivalent in

the SDK. The UI control here is the familiar dropdown list but it is a filtered list of only

service items and other charge items. These are the only item types that can be used in

vehicle mileage transactions. If you supply an item of a different type than service or other

charge via the SDK, you’ll get a runtime error.

Mileage Rate. A UI-only feature. The Mileage Rate button is located in the top middle of

the Vehicle Mileage entry form. You click on it to display the Mileage Rates form, which is

where you specify the mileage rate for your current tax year. This rate is established by

your income tax authority, for example, the IRS. This rate multiplied by the mileage from

the mileage transactions yields the mileage expense reported by the Mileage By Vehicle

reports.

Notice that you can change this rate from the UI whenever you want for that tax year, and

the Mileage by Vehicle reports automatically reflect those changes. However, you cannot

set or modify this rate via the SDK.

Setting Up an Item to be Used In Billable Mileage Transactions 321

(c) 2013 Intuit Inc. All rights reserved.

Mileage Reports. A UI-only feature. The mileage reports can be accessed via this button in

the Vehicle Mileage entry form, or through the usual UI features that support reports: the

Report Center or the Report pulldown menu.

The reports consist of two main reports:

• Summary and detail reports for Mileage by Vehicle, which lists the mileage and

expenses calculated using the mileage rates set via the Mileage Rate button.

• Summary and detail reports for Mileage by Job, which lists the mileage and charges for

each customer. The charges are derived from the mileage multiplied by the rate

specified in the item used in the mileage transaction.

Setting Up an Item to be Used In Billable Mileage Transactions

If you want to bill your customers for mileage, you need to create a service item or an other

charge item that will show up on the invoice as the line item and also establish the mileage

rate. shows a sample service item set up to bill the mileage at a rate of 0.70 per mile.

Figure 24-4 Setting up a service item for mileage charges

Keep in mind that the Rate field in service items, and the Amount field in other charge

items are both used in Mileage transactions in exactly the same way. That is, they are rates,

and they are multiplied against the mileage in a mileage transaction to yield the charges for

the customer. They cannot be used to establish a flat fee amount.

322 Chapter 24: Using the Quickbooks Vehicle Mileage Feature

(c) 2013 Intuit Inc. All rights reserved.

Other than the Rate/Amount issue, there is nothing special to note here, except that when

you create either a service item or an other charge item to bill customers against, the

account you specify for that item is typically an income account. The tax code field refers

to sales tax. If your company doesn’t use sales tax, then this doesn’t appear as a choice.

What Happens to Mileage Charges When I Create Invoices?

The behavior of invoices and mileage charges varies slightly depending on whether you add

the invoice from the UI or via the SDK

Mileage Charges and Invoices in the UI

In the UI, when you create an invoice for a customer who has any outstanding charges, such

as mileage charges from Vehicle Mileage transactions, you are prompted to added them to

the invoice (Figure 24-5 on page 322).

Figure 24-5 Billable Time/Costs prompt

If you want to add these charges and click OK, a selection form is displayed (Figure 24-6

on page 323). The list of outstanding mileage charges for the customer is displayed when

you select the Mileage tab.

What Happens to Mileage Charges When I Create Invoices? 323

(c) 2013 Intuit Inc. All rights reserved.

Figure 24-6 .Billable Time/Costs Mileage tab

You apply charges to the invoice by selecting them then clicking OK. The charges appear as

line items in the invoice.

Mileage Charges and Invoices in the SDK

What happens when you create an invoice for a customer via the SDK by issuing the

InvoiceAdd request? If that customer has outstanding mileage charges, how do you get

those charges into the invoice? Is the outstanding charges prompt dialog displayed, as it is

when you create an invoice via the UI?

The answer is that you cannot add these mileage charges at all if you are creating invoices

via the SDK. No prompt is displayed to allow the user to add the charges to the invoice as

the SDK creates them. The only way to add a customer’s outstanding mileage charges is for

a user to create the invoice entirely from the UI.

324 Chapter 24: Using the Quickbooks Vehicle Mileage Feature

(c) 2013 Intuit Inc. All rights reserved.

Adding a Vehicle Mileage Transaction

You can use qbXML to add the transaction or you can use QBFC.

Adding Vehicle Mileage in qbXML

<?xml version="1.0"?>

<?qbxml version="6.0"?>

<QBXML>

<QBXMLMsgsRq onError="continueOnError">

<VehicleMileageAddRq requestID = "UUIDTYPE">

<VehicleMileageAdd >

<VehicleRef>

<FullName>Land Lugger</FullName>

</VehicleRef>

<CustomerRef>

<FullName>Jim Fuller</FullName>

</CustomerRef>

<ItemRef>

<FullName>Delivery Fee</FullName>

</ItemRef>

<OdometerStart>1500</OdometerStart>

<OdometerEnd>1600</OdometerEnd>

<BillableStatus>Billable</BillableStatus>

</VehicleMileageAdd>

</VehicleMileageAddRq>

</QBXMLMsgsRq>

</QBXML>

Adding Vehicle Mileage in QBFC

The following VB sample shows how to build a VehicleMileageAdd request using QBFC.

It is a one-shot sample that opens the connection with the currently open QuickBooks

company, starts the session, builds a billable mileage request, sends it to QuickBooks.

The transaction properties are all set with hardcoded values, since the purpose of this

snippet is only to show how to build the VehicleMileageAdd request.

SessionManager As QBSessionManager

Set SessionManager = New QBSessionManager

SessionManager.OpenConnection "", "VehicleMileageAdd_Sample"

SessionManager.BeginSession "", omDontCare

Dim VehicleMileageAddSet As IMsgSetRequest

Set VehicleMileageAddSet = SessionManager.CreateMsgSetRequest("US", 6, 0)

Dim VehicleMileageAdd As IVehicleMileageAdd

Set VehicleMileageAdd = VehicleMileageAddSet.AppendVehicleMileageAddRq

Querying and Deleting Vehicle Mileage Transactions 325

(c) 2013 Intuit Inc. All rights reserved.

VehicleMileageAdd.VehicleRef.FullName.setValue "Land Lugger"

VehicleMileageAdd.CustomerRef.FullName.setValue "Phillipe Montreaux"

VehicleMileageAdd.ItemRef.FullName.setValue "Delivery Fee"

VehicleMileageAdd.ORVehicleMileageAdd.OdometerReadingAdd.OdometerStart.setValue 1200

VehicleMileageAdd.ORVehicleMileageAdd.OdometerReadingAdd.OdometerEnd.setValue 1400

VehicleMileageAdd.BillableStatus.setValue bsBillable

Dim VehicleMileageAddResp As IMsgSetResponse

Set VehicleMileageAddResp = SessionManager.DoRequests(VehicleMileageAddSet)

SessionManager.EndSession

SessionManager.CloseConnection

Querying and Deleting Vehicle Mileage Transactions

When you query for vehiclemileage transactions and use a TxnDateRangeFilter, the From

and To dates that you specify are assumed to be the Trip End dates, so the filter will filter

for the Trip End date values that satisfy your filter range.

Vehicle mileage transactions can be queried and deleted like other transactions, and are

subject to the same rules and limitations. For more information, see these chapters: Chapter

8, “Creating Queries,” and Chapter 10, “Modifying and Deleting Transactions and List

Objects.”

Modifying Vehicle Mileage Transactions

Mileage transactions can be modified in the UI, but currently cannot be modified via the

SDK.

Adding, Modifying, Querying Vehicles in the Vehicle List

Vehicles are simple items, and the SDK allows you to add them, modify them, and query

for them.

Adding a Vehicle in qbXML

<?xml version="1.0"?>

<?qbxml version="6.0"?>

<QBXML>

<QBXMLMsgsRq onError="continueOnError">

<VehicleAddRq requestID = "UUIDTYPE">

<VehicleAdd>

<Name>Ford Romper</Name>

<IsActive>true</IsActive>

<Desc>flatbed</Desc>

</VehicleAdd>

</VehicleAddRq>

</QBXMLMsgsRq>

</QBXML>

326 Chapter 24: Using the Quickbooks Vehicle Mileage Feature

(c) 2013 Intuit Inc. All rights reserved.

What Can I Do With the Comp Codes I Create? 327

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 25 1

ADDING, MODIFYING, QUERYING WORKER COMP CODES 1

Workers compensation insurance companies categorize the various types of work your

employees perform and assign codes to them, with different insurance rates applied to the

different codes. In QuickBooks, you need to create these workers compensation codes and

the premiums (rates) that apply to them and then assign them to employees. You need to do

this so QuickBooks can track the premiums you owe as you pay your employees.

Beginning with qbXML spec 7.0 and QuickBooks 2008, the SDK provides access to the

workers comp code feature via the WorkersCompCodeAdd, WorkersCompCodeMod, and

WorkersCompCodeQuery requests.

The following functionalities are NOT supported in the SDK:

• You cannot assign codes to employees in the SDK--you must use the workers’ comp

setup within the QuickBooks UI for that.

• The Experience Modification feature available in the QuickBooks UI for workers’

comp codes is not available in the SDK.

• You cannot currently delete codes from the SDK using the ListDel request. You have to

delete unwanted codes using the QuickBooks UI.

What Can I Do With the Comp Codes I Create?

Once the workers comp codes are created, you use the workers’ comp code wizard within

the QuickBooks UI to assign a code to an employee. You cannot assign codes to an

employee from the SDK. Once a code is assigned, information about workers comp

premiums paid for the employee are accessible through the various workers comp reports

available through the QuickBooks UI.

Workers’ Comp Code Feature Requires Payroll Subscription

For both the QuickBooks UI and the SDK, you are able to access the QuickBooks workers’

comp codes feature only if the company file is subscribed to the Intuit payroll service, or, if

the company file is a sample QuickBooks company.

If neither of these are the case, then you won’t be able to access the feature in the

QuickBooks UI. In the SDK, you’ll get an error when you send workers’ comp code add,

modify, or query requests.

328 Chapter 25: Adding, Modifying, Querying Worker Comp Codes

(c) 2013 Intuit Inc. All rights reserved.

How Can I Tell Whether the Company is Subscribed to Payroll?

PreferencesQuery and HostQuery do not indicate whether the company is subscribed to

payroll.

However, you can determine this by simply issuing a WorkersCompCodeQuery and

checking the response for the error status code of 3250, feature not available.

Here is a query you could use for this:

<?xml version="1.0"?>

<?qbxml version="7.0"?>

<QBXML>

<QBXMLMsgsRq onError="continueOnError">

<WorkersCompCodeQueryRq requestID="2" />

</QBXMLMsgsRq>

</QBXML>

Workers Comp Codes in the UI and in the SDK

In the QuickBooks UI (if the company is a sample company or subscribed to the Intuit

payroll service), you you can add new workers compensation codes by selecting List ->

Workers Comp List to display the workers comp list (see Figure 25-1).

Figure 25-1 The Workers’ Comp List

In the list display form shown above, notice the code name, description, rate, and effective

dates, which correspond to the SDK fields used in the WorkersCompCode Add/Mod/Query

that we’ve called out in Figure 25-1. That form displays all of the names of the currently

created codes, but only the dates and rates of codes that are currently in effect (see the entry

in the figure for Salespersons). That is, if the code has a future effective date (or a past one)

and no currently effective date, the rate and date fields are empty in the form. That is why

we show the <CurrentRate> and <CurrentEffectiveDate> tags in Figure 25-1.

Workers Comp Codes in the UI and in the SDK 329

(c) 2013 Intuit Inc. All rights reserved.

Adding a Comp Code with Several Rates Possible via SDK

In the QuickBooks UI, you can specify a comp code that has a single rate. However, in the

SDK, you can create a comp code that has several rates, each of which has its own effective

date.

Current Effective Date and Current Rate

When you add or modify a workers’ comp code through the SDK, you’ll notice that you

can supply only the tags <Rate> and <EffectiveDate>. Where do the tags <CurrentRate>

and <CurrentEffectiveDate> come from? Those tags are from the responses to the

WorkersCompAdd/Mod/Query request. QuickBooks compares the supplied dates to the

current date and figures out whether the supplied effective date is in the past, present, or

future, and identifies the date as such in the Ret object.

Rate History: Visible Only Through the SDK

QuickBooks maintains rate history. This rate history includes the current date and rate, one

future date and rate and all past dates and rates. (If you already have a future effective date

and rate, and then add a new future effective date and rate, the new entry replaces the

currently existing one in the rate history.)

Although QuickBooks maintains the rate history, that history is not available in the

QuickBooks UI. To see the rate history, you’ll need to check the response to a

WorkersCompCode Add/Mod/Query request. The rate history is shown in the RateHistory

aggregates (in bold font) in the following response to a query request:

<?xml version="1.0" ?>

<QBXML>

<QBXMLMsgsRs>

<WorkersCompCodeModRs requestID="2" statusCode="0" statusSeverity="Info"

statusMessage="Status OK">

<WorkersCompCodeRet>

<ListID>80000006-1197741184</ListID>

<TimeCreated>2007-12-15T09:53:04-08:00</TimeCreated>

<TimeModified>2007-12-15T15:39:35-08:00</TimeModified>

<EditSequence>1197761975</EditSequence>

<Name>66891</Name>

<IsActive>true</IsActive>

<Desc>ordinance defuser</Desc>

<CurrentRate>78.00</CurrentRate>

<CurrentEffectiveDate>2007-07-07</CurrentEffectiveDate>

<NextRate>88.00</NextRate>

<NextEffectiveDate>2008-07-07</NextEffectiveDate>

<RateHistory>

<Rate>78.00</Rate>

330 Chapter 25: Adding, Modifying, Querying Worker Comp Codes

(c) 2013 Intuit Inc. All rights reserved.

<EffectiveDate>2007-07-07</EffectiveDate>

</RateHistory>

<RateHistory>

<Rate>88.00</Rate>

<EffectiveDate>2008-07-07</EffectiveDate>

</RateHistory>

</WorkersCompCodeRet>

</WorkersCompCodeModRs>

</QBXMLMsgsRs>

</QBXML>

Adding a Workers Comp Code

To add a comp code via the UI, select List -> Workers Comp List->Workers Comp Code-

>New to display the New Workers Compensation Code form.

Figure 25-2 New Workers Comp Code Form

Adding a Comp Code Using QBFC

The following QBFC code (in VB) adds the workers’ comp code 8013. It has one rate that

goes into effect on July 7, 2007.

SessionManager.OpenConnection "", "IDN WorkersCompCode Add Sample"

SessionManager.BeginSession "", omDontCare

Dim WorkersCompCode_Set As IMsgSetRequest

Set WorkersCompCode_Set = SessionManager.CreateMsgSetRequest("US", 7, 0)

Dim WorkersCompCodeAdder As IWorkersCompCodeAdd

Set WorkersCompCodeAdder = WorkersCompCode_Set.AppendWorkersCompCodeAddRq

WorkersCompCodeAdder.Name.setValue "8013"

WorkersCompCodeAdder.Desc.setValue "driver"

WorkersCompCodeAdder.IsActive.setValue True

Querying for Workers Comp Codes 331

(c) 2013 Intuit Inc. All rights reserved.

Dim RateEntree As IRateEntry

Set RateEntree = WorkersCompCodeAdder.RateEntryList.Append

RateEntree.EffectiveDate.setValue #7/7/2007 9:35:00 AM#

RateEntree.Rate.setValue 1#

Adding a Comp Code Using qbXML

The following qbXML adds the workers’ comp code 8813. It has one rate that goes into

effect on July 7, 2007, and another rate that supercedes that rate on January 7, 2008.

<?xml version="1.0"?>

<?qbxml version="7.0"?>

<QBXML>

<QBXMLMsgsRq onError="continueOnError">

<WorkersCompCodeAddRq requestID="2">

<WorkersCompCodeAdd>

<Name>8813</Name>

<IsActive>true</IsActive>

<Desc>tack driver</Desc>

<RateEntry>

<Rate>1.00</Rate>

<EffectiveDate>2007-07-07</EffectiveDate>

</RateEntry>

<RateEntry>

<Rate>1.10</Rate>

<EffectiveDate>2008-01-07</EffectiveDate>

</RateEntry>

</WorkersCompCodeAdd>

</WorkersCompCodeAddRq>

</QBXMLMsgsRq>

</QBXML>

Querying for Workers Comp Codes

To query for comp codes using the SDK, use the request WorkersCompCodeQuery. You

can filter on the name of the code, the active status, effective date/date range, and modified

date.

Notice that this query does not support iterators, as the number of codes is expected to be

relatively small.

Querying for Comp Codes in qbXML

The following qbXML shows a query that checks for all comp codes (inactive as well as

active) that have the number 5 in the comp code name, and that has an effective date

between January 1, 2003 and December 28, 2008. Also, just to show another filter in the

mix, we want only those that have been modified between the start of 2003 and the end of

2007.

332 Chapter 25: Adding, Modifying, Querying Worker Comp Codes

(c) 2013 Intuit Inc. All rights reserved.

<?xml version="1.0"?>

<?qbxml version="7.0"?>

<QBXML>

<QBXMLMsgsRq onError="continueOnError">

<WorkersCompCodeQueryRq requestID="2">

<ActiveStatus>All</ActiveStatus>

<FromModifiedDate>2003-01-01</FromModifiedDate>

<ToModifiedDate>2007-12-28</ToModifiedDate>

<NameFilter>

<MatchCriterion>Contains</MatchCriterion>

<Name>5</Name>

</NameFilter>

<FromEffectiveDate>2003-01-01</FromEffectiveDate>

<ToEffectiveDate>2008-12-28</ToEffectiveDate>

</WorkersCompCodeQueryRq>

</QBXMLMsgsRq>

</QBXML>

Modifying Workers Comp Codes

To edit a comp code via the UI, select List -> Workers Comp List->, then doubleclick on

the desired comp code to edit that code in the Edit Workers’ Compensation Code window

(Figure 25-3):

Figure 25-3 Editing the Comp Code

The element names you use in WorkersCompCodeMod are shown in the figure next to the

UI fields that they affect. Notice the two display-only text fields at the bottom of the form:

there are no fields in the Modify request that correspond to these.

Modifying Workers Comp Codes 333

(c) 2013 Intuit Inc. All rights reserved.

Compared to the UI, using the SDK to modify comp codes provides you with a little more

flexibility. That is, you can modify several rate entry aggregates, each with its own rate and

corresponding effective date, whereas in the UI you can modify only one.

Modifying a Comp Code in qbXML

The following XML sample modifies a comp code with the name “8813” that has a single

entry (rate and effective date).

<?xml version="1.0"?>

<?qbxml version="7.0"?>

<QBXML>

 <QBXMLMsgsRq onError="continueOnError">

<WorkersCompCodeModRq requestID="2">

 <WorkersCompCodeMod>

<ListID>80000007-1197757964</ListID>

 <EditSequence>1197757964</EditSequence>

 <Name>8813</Name>

 <IsActive>true</IsActive>

 <Desc>operator</Desc>

 <RateEntry>

 <Rate>1.00</Rate>

 <EffectiveDate>2007-08-08</EffectiveDate>

 </RateEntry>

 </WorkersCompCodeMod>

</WorkersCompCodeModRq>

 </QBXMLMsgsRq>

</QBXML>

334 Chapter 25: Adding, Modifying, Querying Worker Comp Codes

(c) 2013 Intuit Inc. All rights reserved.

How Can I Tell If the UOM Feature is Available? 335

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 26 1

USING THE UNIT OF MEASURE FEATURE VIA THE SDK 1

With the unit of measure feature (called UOM in this chapter) turned on in the QuickBooks

company file, you can specify what measure is being used to express an item’s quantity,

prices, rates, and costs. For example, if you enter a quantity of 25 on an invoice for a ball

point pen item, the unit of measure can show whether that quantity means 25 individual

pens, 25 boxes of 12, or 25 cases containing 120 pens each.

The QuickBooks company file can be set to support a single UOM for an item, or to

support multiple UOMs per item where you can order in one unit and sell in another.

SDK support of the feature begins in qbXML spec 7.0 and QB 2008. The design intention

of the SDK is to allow applications to use UOM in a similar manner as the interactive user.

This chapter describes how to use the UOM feature in QuickBooks in the SDK.

How Can I Tell If the UOM Feature is Available?

An application can access UOM functionality for QuickBooks 2008 or greater versions IF

the company file being used has UOM enabled.

How do you tell if the company file has UOM enabled? The PreferencesQuery does not

currently indicate whether UOM is enabled or not, so you cannot use that. However, a good

way to determine this is to do a UnitOfMeasureSetQuery as follows:

<?xml version="1.0"?>

<?qbxml version="7.0"?>

<QBXML>

<QBXMLMsgsRq onError="continueOnError">

<UnitOfMeasureSetQueryRq requestID="0" />

</QBXMLMsgsRq>

</QBXML>

If UOM is disabled for the company file, the query will return an error code of 3250 “This

feature is not enabled or not available in this version of QuickBooks”.

Which SDK Requests Support UOM?

SDK support of UOM features are provided in the following requests:

• UnitOfMeasureSetAdd, which creates a unit of measure set.

• UnitOfMeasureSetQuery, which queries for existing UOM sets.

• The various Item add and mod requests contain an optional UnitOfMeasureSetRef

aggregate that specifies which UOM set applies to the item. The various Item mod

336 Chapter 26: Using the Unit of Measure Feature Via the SDK

(c) 2013 Intuit Inc. All rights reserved.

requests also contain a ForceUOMChange boolean that is needed to dismiss the UI user

prompt that QuickBooks puts up when you try to modify a UOM setting.

> ItemServiceAdd and Mod

> ItemGroupAdd and Mod

> ItemInventoryAdd and Mod

> ItemNonInventoryAdd and Mod

> ItemInventoryAssemblyAdd and Mod

• In the following transactions, UOM support is provided in transaction line items

through the UnitOfMeasure element that specifies which one of the item’s UOMs is to

be used.

> Bill Add + Mod

> Charge Add and Mod

> Check Add and Mod

> CreditCardCharge Add and Mod

> CreditCardCredit Add and Mod

> CreditMemo Add and Mod

> Estimate Add and Mod

> Invoice Add and Mod

> PurchaseOrder Add and Mod

> SalesOrder Add+Mod

> SalesReceipt Add and Mod

> Vendor Credit Add and Mod

> ItemReceipt Add

How Does the UOM Feature Work?

In QuickBooks, you first create a UOM set with a base measure and, optionally, related

measures that are some multiple of the base measure (Figure 26-1). We’ll cover how to

create UOM sets later; right now, we just want to introduce some concepts. Notice the

naming convention of the UOM set. It starts with “By the.” This is significant and we’ll

talk about that later as well.

How Does the UOM Feature Work? 337

(c) 2013 Intuit Inc. All rights reserved.

Figure 26-1 UOM Sets

That UOM set appears in the UOM list from which it can be assigned to an item when the

item is created or modified. Figure 26-2 shows what is happening when you assign a UOM

set to an item. You get all the UOMs within that UOM set via the UOM set reference.

Figure 26-2 Assigning a UOM set to an item (SDK)

Figure 26-3 shows the assigning of a UOM set from within the UI.

338 Chapter 26: Using the Unit of Measure Feature Via the SDK

(c) 2013 Intuit Inc. All rights reserved.

Figure 26-3 Assigning a UOM set to an item (UI)

Subsequently, in transactions, any of the units of measure within that item’s UOM set can

be used in a transaction line item for that item, to specify the unit used in the transaction

(see Figure 26-4).

How Does the UOM Feature Work? 339

(c) 2013 Intuit Inc. All rights reserved.

Figure 26-4 Invoice line gets UOMs from the UOM set assigned to ItemRef (eggs)

The above is true only if the conpany file is set to multiple UOM per item mode. If the

company file is set to single UOM per item, only the base unit can be used.

Figure 26-5 shows how a UOM is assigned in a transaction line in the QuickBooks UI.

340 Chapter 26: Using the Unit of Measure Feature Via the SDK

(c) 2013 Intuit Inc. All rights reserved.

Figure 26-5 Specifying a UOM in a transaction line (UI)

Again the above figure holds true only in multiple UOM mode. In single UOM per item,

there is no dropdown list and the U/M is listed but greyed out, disinviting any user

selection, because only the base unit is allowed. Even in the SDK, if the company file is set

to single UOM per item, you can only specify the base unit. Specifying some other unit will

result in an error status code of 3210.

Unfortunately there currently no way to determine whether the company file is in single

UOM or multiple UOM mode, other than perhaps checking for error 3210 when assigning a

non-base unit to a transaction line.

Creating a UOM Set in the UI

In the QuickBooks UI, if the company is enabled for multiple UOMs per item, a UOM can

be created either from the UOM set list (Lists->U/M Set List->U/M Set->New) as shown in

Figure 26-6, or from the New or Edit Item forms by clicking <Add New> within the U/M

Set dropdown listbox.

How Do I Create a UOM Set in the SDK? 341

(c) 2013 Intuit Inc. All rights reserved.

Figure 26-6 UOM Set List (UI)

If the company file is enabled for single UOM per item, then you simply create a new

UOM in the U/M dropdown list by clicking <Add New>. QuickBooks will then create a

default UOM set for that new UOM, and assign that unit as the base unit and name the

UOM set “By the <whatever name you pick for the new unit>”, for example “By the carat”.

Of course, because in single UOM/item mode the UI will not have the UOM list, you won’t

be able to see the UOM set in the UI in single UOM mode, but you will be able to get the

UOM sets by doing a UnitOfMeasureSetQuery.

How Do I Create a UOM Set in the SDK?

You use UnitOfMeasureSetAdd to create a UOM set in the SDK. You’ll need to

1. Specify a unique name for the UOM set, starting with the prefix “By the”. You’ll get an

error code 3100 in the response if the name is not unique.

2. Create a base unit. See the online help in QuickBooks for an explanation of units of

measure and base units and how to pick the base unit.

3. Optionally, but normally, you’ll create one or more related units using the RelatedUnit

aggregate, where you specify the conversion ratio (how many base units are contained

in that related unit). For example, if base unit is carton and the related unit “case”

contains 10 cartons, then the conversion ratio is 10.

4. You can also optionally specify which one of the units in the UOM set is to be used as

the default unit (via the DefaultUnit aggregate) in transaction lines for purchases, or for

sales, or for shipping. The unit specified in a default here will be the unit automatically

used in the transaction lines.

5. Check the response to your UOM set add request to determine whether the company

file is enabled for UOM. If this isn’t the case, you’ll get an error code of 3250 in your

response, indicating the feature is not supported.

342 Chapter 26: Using the Unit of Measure Feature Via the SDK

(c) 2013 Intuit Inc. All rights reserved.

Why Do I Need to Follow the UOM Set Naming Convention?

Every UOM set name should begin with “By the”. For example, “By the pound” or “By the

weigh”. Why is this? Unless you begin the UOM set with “By the” then the UOM set won’t

show up in the UI when the company file is enabled for single UOM per item mode. That

is, in the New Item or Edit Item form, the units in those UOM sets won’t appear and you

won’t be able to use them in the UI. (However, UOM sets that don’t follow this convention

will still show up in a UnitOfMeasureSet query.)

Can I Modify a UOM Set in the SDK?

No. This is currently not supported.

Can I Set UOM Set Defaults for Purchase, Sales, and Shipping?

Yes. You use the DefaultUnit aggregate in the UnitOfMeasureSetAdd request to specify

defaults:

<DefaultUnit>

<UnitUsedFor>Shipping</UnitUsedFor>

<Unit>box</Unit>

</DefaultUnit>

The <Unit> field can contain any unit specified in the UOM set (base unit or related units).

The <UnitUsedFor> field can contain one of the following values:

• Sales

• Purchase

• Shipping

If you don’t specify any defaults, the base unit will be used as the default for purchase and

sales, and there will be no default for shipping.

See the samples below to see how to set the defaults in QBFC and qbXML.

How Do I Specify Which Units the UOM Set Contains?

You do this by specifying one <BaseUnit>, which is required, and 0 to N <RelatedUnit>,

which are all optional, as shown in the following qbxML snippet:

How Do I Create a UOM Set in the SDK? 343

(c) 2013 Intuit Inc. All rights reserved.

<UnitOfMeasureSetAddRq requestID="0">

<UnitOfMeasureSetAdd>

<Name>Munitions</Name>

<UnitOfMeasureType>Count</UnitOfMeasureType>

<BaseUnit>

<Name>cartridge</Name>

<Abbreviation>ctrdge</Abbreviation>

</BaseUnit>

<RelatedUnit>

<Name>box</Name>

<Abbreviation>bx</Abbreviation>

<ConversionRatio>25.00</ConversionRatio>

</RelatedUnit>

</UnitOfMeasureSetAdd>

</UnitOfMeasureSetAddRq>

What Does the Abbreviation Field Do? Why’s it Required?

The <Abbreviation> field specified the characters that are to be displayed and printed in the

transaction line item if that unit is selected for the item. Without the abbreviation,

QuickBooks won’t be able to indicate the unit.

Creating a UOM Set in QBFC

The following code sample shows how to build a UOM set. The UOM set name, type, and

base unit are required. The sample assigns default units to purchase and sales transaction

line items and also for shipping. The sample creates only one related unit.

SessionManager.OpenConnection "", "IDN UOM Set Add Sample"

SessionManager.BeginSession "", omDontCare

Dim UOM_AddSet As IMsgSetRequest

Set UOM_AddSet = SessionManager.CreateMsgSetRequest("US", 7, 0)

‘Append the add request and get the object so we can set its properties

Dim UOMSetAdder As IUnitOfMeasureSetAdd

Set UOMSetAdder = UOM_AddSet.AppendUnitOfMeasureSetAddRq

‘Set all required properties

UOMSetAdder.UnitOfMeasureType.setValue uomtCount

UOMSetAdder.Name.setValue "By the bale"

UOMSetAdder.BaseUnit.Abbreviation.setValue "ble"

UOMSetAdder.BaseUnit.Name.setValue "bale"

‘Not required, but handy. We set default UOM for purchases, sales, and

‘shipping.

Dim DefUnitList As IDefaultUnit

Set DefUnitList = UOMSetAdder.DefaultUnitList.Append

DefUnitList.Unit.setValue "flake"

344 Chapter 26: Using the Unit of Measure Feature Via the SDK

(c) 2013 Intuit Inc. All rights reserved.

‘Specify uufSales to set the unit as default in a Sales txn line item,

‘uufPurchase to set the unit as default in a Purchase txn line item,

‘uufShipping to set a default for a shipping line.

DefUnitList.UnitUsedFor.setValue uufSales

‘Notice we can re-use the IDefaultUnit object.

Set DefUnitList = UOMSetAdder.DefaultUnitList.Append

DefUnitList.Unit.setValue "bale"

DefUnitList.UnitUsedFor.setValue uufPurchase

Set DefUnitList = UOMSetAdder.DefaultUnitList.Append

DefUnitList.Unit.setValue "bale"

DefUnitList.UnitUsedFor.setValue uufShipping

‘Now we specify the other units of measure within the set. You use the

‘conversion ratio field to specify how many base units are contained in the

‘related unit. Here, the conversion ratio is 20 because there

‘are 20 flakes of hay in a bale, which is the base unit.

Dim RelUnit As IRelatedUnit

Set RelUnit = UOMSetAdder.RelatedUnitList.Append

RelUnit.Abbreviation.setValue "flk"

RelUnit.ConversionRatio.setValue 20

RelUnit.Name.setValue "flake"

Creating a UOM Set in qbXML

The following code sample shows how to build a UOM set. The UOM set name, type, and

base unit are required. The sample assigns default units to purchase and sales transaction

line items and also for shipping. The sample creates two related units.

<?xml version="1.0" ?>

<?qbxml version="7.0"?>

<QBXML>

<QBXMLMsgsRq onError="stopOnError">

<UnitOfMeasureSetAddRq requestID="0">

<UnitOfMeasureSetAdd>

<Name>By the cartridge</Name>

<UnitOfMeasureType>Count</UnitOfMeasureType>

<BaseUnit>

<Name>cartridge</Name>

<Abbreviation>ctrdge</Abbreviation>

</BaseUnit>

<RelatedUnit>

<Name>box</Name>

<Abbreviation>bx</Abbreviation>

<ConversionRatio>25.00</ConversionRatio>

</RelatedUnit>

<RelatedUnit>

<Name>case</Name>

<Abbreviation>cse</Abbreviation>

<ConversionRatio>500.00</ConversionRatio>

</RelatedUnit>

<DefaultUnit>

<UnitUsedFor>Sales</UnitUsedFor>

Specifying a UOM Set for an Item 345

(c) 2013 Intuit Inc. All rights reserved.

<Unit>box</Unit>

</DefaultUnit>

<DefaultUnit>

<UnitUsedFor>Purchase</UnitUsedFor>

<Unit>case</Unit>

</DefaultUnit>

<DefaultUnit>

<UnitUsedFor>Shipping</UnitUsedFor>

<Unit>box</Unit>

</DefaultUnit>

</UnitOfMeasureSetAdd>

</UnitOfMeasureSetAddRq>

</QBXMLMsgsRq>

</QBXML>

Specifying a UOM Set for an Item

You can specify a UOM set for a service item, inventory item, non-inventory item, item

assembly, and item group. You do this by using the UnitOfMeasureSetRef aggregate to

refer to an existing UOM set. In an Item* Add request, the UnitOfMeasureSetRef is all you

use.

What You Must Do in an Item Mod

In an Item* Mod request, you also need to use the ForceUOMChange if you are changing

the UOM set and the base unit of the new set doesn’t match the base unit of the UOM set

currently assigned to the item. This does the same thing as the user accepting the warning

prompt in the UI. If you don’t specify ForceUOMChange, the default is false, and you’ll

get an error if you try to change the UOM set if the new set has a different base unit.

You should be aware that if you change the base unit for an item, you should also change

the item's quantities on hand and cost to reflect the new unit; otherwise the values will be

inaccurate. An alternative to handle such UOM changes to an item is to create a new item

with the desired UOM set and inactivate the old item.

Specifying a UOM Set in an Item* Add Request

The following code creates a service item with a UOM set specified.

In QBFC

SessionManager.OpenConnection "", "IDN ItemService Add Sample"

SessionManager.BeginSession "", omDontCare

Dim ItemServiceAddSet As IMsgSetRequest

Set ItemServiceAddSet = SessionManager.CreateMsgSetRequest("US", 7, 0)

346 Chapter 26: Using the Unit of Measure Feature Via the SDK

(c) 2013 Intuit Inc. All rights reserved.

Dim ServiceItemAdder As IItemServiceAdd

Set ServiceItemAdder = ItemServiceAddSet.AppendItemServiceAddRq

ServiceItemAdder.Name.setValue "Pump Repair"

ServiceItemAdder.ORSalesPurchase.SalesOrPurchase.Desc.setValue "repair

small pumps"

ServiceItemAdder.ORSalesPurchase.SalesOrPurchase.ORPrice.Price.setValue 50

ServiceItemAdder.ORSalesPurchase.SalesOrPurchase.AccountRef.FullName.

setValue "Service Income"

ServiceItemAdder.UnitOfMeasureSetRef.FullName.setValue "By the hour"

In qbXML

<?xml version="1.0" ?>

<?qbxml version="7.0"?>

<QBXML>

<QBXMLMsgsRq onError="stopOnError">

<ItemServiceAddRq requestID="0">

<ItemServiceAdd>

<Name>Pump Repair</Name>

<UnitOfMeasureSetRef>

<FullName>By the hour</FullName>

</UnitOfMeasureSetRef>

<SalesOrPurchase>

<Desc>repair small pumps</Desc>

<Price>50.00</Price>

<AccountRef>

<FullName>Service Income</FullName>

</AccountRef>

</SalesOrPurchase>

</ItemServiceAdd>

</ItemServiceAddRq>

</QBXMLMsgsRq>

</QBXML>

Specifying a UOM Set in an Item* Mod Requst

The following code modifies a service item to change the UOM set.

In QBFC

SessionManager.OpenConnection "", "IDN ItemService Mod Sample"

SessionManager.BeginSession "", omDontCare

Dim ItemServiceAddSet As IMsgSetRequest

Set ItemServiceAddSet = SessionManager.CreateMsgSetRequest("US", 7, 0)

Dim ServiceItemAdder As IItemServiceMod

Set ServiceItemAdder = ItemServiceAddSet.AppendItemServiceModRq

ServiceItemAdder.EditSequence.setValue "1197702697"

ServiceItemAdder.ListID.setValue "80000057-1197702697"

ServiceItemAdder.UnitOfMeasureSetRef.FullName.setValue "by the day"

ServiceItemAdder.ForceUOMChange.setValue True

Using UOM in Transactions 347

(c) 2013 Intuit Inc. All rights reserved.

In qbXML

<?xml version="1.0" ?>

<?qbxml version="7.0"?>

<QBXML>

<QBXMLMsgsRq onError="stopOnError">

<ItemServiceModRq requestID="0">

<ItemServiceMod>

<ListID>80000057-1197702697</ListID>

<EditSequence>1197702697</EditSequence>

<UnitOfMeasureSetRef>

<FullName>by the day</FullName>

</UnitOfMeasureSetRef>

<ForceUOMChange>1</ForceUOMChange>

</ItemServiceMod>

</ItemServiceModRq>

</QBXMLMsgsRq>

</QBXML>

Using UOM in Transactions

When you create or modify a transaction, you specify the UOM in the transaction line item

using the UnitOfMeasure element, which occurs after the Quantity element. You must

specify a unit from the UOM set for the item that is referenced in that line. Otherwise,

you’ll get a runtime error.

Also, the quantity field always reflects the quantity in terms of the base unit. Suppose your

base unit is one dozen (eggs). If you order a quantity of 3 and set the units to the related

unit of crate (a crate having 10 dozen eggs), then QuickBooks automatically recalculates

the quantity to a value of 0.3 because the order now uses the unit crate! It does this

calculation using the conversion ratio of that related unit.

Using UOM in a Transaction Add Request

The following code creates a SalesOrder containing one line item of “eggs” with a UOM

set to “crate”, which contains 10 dozen eggs. Because the base unit is one dozen eggs, the

quantity here means 3 dozen eggs, not 3 crates. QuickBooks sees the unit of crate and

automatically changes that quantity to reflect the crates unit: 3 dozen eggs becomes 0.3

crates and so the actual SalesOrder is for 0.3 crates of eggs.

In QBFC

Dim SessionManager As QBSessionManager

Set SessionManager = New QBSessionManager

SessionManager.OpenConnection2 appID, appleName, ctLocalQBD

SessionManager.BeginSession "", omDontCare

348 Chapter 26: Using the Unit of Measure Feature Via the SDK

(c) 2013 Intuit Inc. All rights reserved.

Dim SalesOrderSet As IMsgSetRequest

Set SalesOrderSet = SessionManager.CreateMsgSetRequest("US", 7, 0)

Dim salesOrder As ISalesOrderAdd

Set salesOrder = SalesOrderSet.AppendSalesOrderAddRq

salesOrder.CustomerRef.FullName.setValue "Abercrombie, Kristy"

salesOrder.RefNumber.setValue "121345"

Dim SOLineItemAdder As ISalesOrderLineAdd

Set SOLineItemAdder =

salesOrder.ORSalesOrderLineAddList.Append.SalesOrderLineAdd

SOLineItemAdder.ItemRef.FullName.setValue "eggs"

SOLineItemAdder.Quantity.setValue 3

SOLineItemAdder.UnitOfMeasure.setValue "crate"

In qbXML

<?xml version="1.0" ?>

<?qbxml version="7.0"?>

<QBXML>

<QBXMLMsgsRq onError = "stopOnError">

<SalesOrderAddRq requestID = "0">

<SalesOrderAdd>

<CustomerRef>

<FullName>Abercrombie, Kristy</FullName>

</CustomerRef>

<RefNumber>121345</RefNumber>

<SalesOrderLineAdd>

<ItemRef>

<FullName>eggs</FullName>

</ItemRef>

<Quantity>3</Quantity>

<UnitOfMeasure>crate</UnitOfMeasure>

</SalesOrderLineAdd>

</SalesOrderAdd>

</SalesOrderAddRq>

</QBXMLMsgsRq>

</QBXML>

Using UOM in a Transaction Mod Request

When you modify a transaction line to change the unit of measure used in that line, (a unit

of measure, NOT the UOM set itself!!), you use the OverrideUOMSetRef aggregate to

specify the UOM set that is already specified for the item referenced in that transaction line,

and then specify the desired unit within that set.

The name of this aggregate is slightly unfortunate since it might lead you to believe that

you can change the UOM set itself here to whatever you want. That is not possible! When

you change the UOM in a transaction Mod request, you cannot change the UOM set itself!

You can only change to a different unit within the UOM set already specifid for the item.

You’ll get an error code of 3210 if you try to change the UOM set.

Using UOM in Transactions 349

(c) 2013 Intuit Inc. All rights reserved.

The following code modifies a SalesOrder containing one line item of “eggs” that has a

UOM set to “crate”. It changes the quantity from 3 to 4 and changes the unit to “dozen”.

In QBFC

Dim SessionManager As QBSessionManager

Set SessionManager = New QBSessionManager

SessionManager.OpenConnection2 appID, appleName, ctLocalQBD

SessionManager.BeginSession "", omDontCare

Dim SalesOrderSet As IMsgSetRequest

Set SalesOrderSet = SessionManager.CreateMsgSetRequest("US", 7, 0)

Dim salesOrder As ISalesOrderMod

Set salesOrder = SalesOrderSet.AppendSalesOrderModRq

salesOrder.EditSequence.setValue "1197739296"

salesOrder.TxnID.setValue "5C56-1197739296"

Dim SOLineItemMod As ISalesOrderLineMod

Set SOLineItemMod =

salesOrder.ORSalesOrderLineModList.Append.SalesOrderLineMod

SOLineItemMod.TxnLineID.setValue "5C58-1197739296"

SOLineItemMod.ItemRef.FullName.setValue "eggs"

SOLineItemMod.Quantity.setValue 4

‘We aren’t changing the UOM set here! Just specifying the UOM set

‘already specified for “eggs”!

SOLineItemMod.OverrideUOMSetRef.FullName.setValue "by the dozen"

SOLineItemMod.UnitOfMeasure.setValue "dozen"

In qbXML

<?xml version="1.0" ?>

<?qbxml version="7.0"?>

<QBXML>

<QBXMLMsgsRq onError = "stopOnError">

<SalesOrderModRq requestID = "0">

<SalesOrderMod>

<TxnID>5C56-1197739296</TxnID>

<EditSequence>1197739296</EditSequence>

<SalesOrderLineMod>

<TxnLineID>5C58-1197739296</TxnLineID>

<ItemRef>

<FullName>eggs</FullName>

</ItemRef>

350 Chapter 26: Using the Unit of Measure Feature Via the SDK

(c) 2013 Intuit Inc. All rights reserved.

<Quantity>4</Quantity>

<UnitOfMeasure>dozen</UnitOfMeasure>

<OverrideUOMSetRef>

<FullName>by the dozen</FullName>

</OverrideUOMSetRef>

</SalesOrderLineMod>

</SalesOrderMod>

</SalesOrderModRq>

</QBXMLMsgsRq>

</QBXML>

What Does ListMerge Do? 351

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 27 1

MERGING ACCOUNTS, CUSTOMERS, VENDORS, CLASSES 1

Merging certain types of list objects is a useful feature of QuickBooks. For example,

merging accounts is useful for eliminating redundant accounts within a given account type.

For example, you might have an expense account that tracks paper reams and a different

expense account that tracks office supplies. Yet, you may want to change this to have only a

single account--the office supplies account--that tracks paper reams along with other office

supplies.

The QuickBooks UI solves these types of problems by allowing users to merge accounts,

customers, and vendors. Beginning with qbXML spec 7.0 and QuickBooks 2008, these

types of list merge operations can also be performed through the SDK by using the request

ListMerge. Ability to merge Classes was added in qbXML 8.0 and QB 2009.

This chapter describes the use of ListMerge and the work you need to do before you

actually invoke ListMerge.

What Does ListMerge Do?

ListMerge is a request that allows you to merge the following:

• Merge one account into another account

• Merge one customer/customer job into another customer/customer job

• Merge one vendor into another vendor

• Merge two classes into one class

IMPORTANT

ListMerge requires the company file to be opened in single
user mode.

What Happens in the ListMerge Operation?

What happens in the merge is that one of the objects, the “merge-from” object, is merged

into the other object, the “merge-to” object. For example, suppose the expense account

“Paper Reams” is merged into the expense account “Office Supplies.” After the merge,

there is only the “Office Supplies” account, and all transactions in the past that referenced

“Paper Reams” now automatically reference “Office Supplies.” This means that balances

will change in the merged-to object as it receives the merged-from balances.

352 Chapter 27: Merging Accounts, Customers, Vendors, Classes

(c) 2013 Intuit Inc. All rights reserved.

When Can I NOT Do a ListMerge?

You cannot do a ListMerge if an accountant copy of the company exists--if you do, you’ll

get an error. The idea is that any merges ought to be done in the accountant copy. Beginning

with QB 2009 and qbXML 8.0, you can use the Account Copy Exists request to check for

this before issuing the list merge request.

Can I Undo or Reverse a ListMerge?

No.

What Must I Do Before Merging?

The merging “rules” are not many in number, but they are different for accounts, customers,

and vendors. The following table shows the rules applying to each:

Merging Accounts 353

(c) 2013 Intuit Inc. All rights reserved.

Table 27-1 Merging Rules and how to follow them

Merging Accounts

To merge two accounts,

1. Compare AccountType of the merge-from account with the AccountType of the merge-

to account. If they aren’t the same stop: you cannot continue. If AccountTypes are the

same:

a. Compare the Sublevel of the merge-from account with the Sublevel of the merge-to

account.

b. If the Sublevels are not the same, change the Sublevel of either the merge-from

account or the merge-to account so that the Sublevels match.

Objects to
Merge Required Pre-Merge Conditions How to Satisfy the Conditions

Accounts 1. Accounts must be of the same AccountType

2. Accounts must be at the same hierarchical
level within the chart of accounts.

1. If the AccountTypes are different,
you cannot proceed. You cannot
change the AccountType.

2. You can change the Sublevel of one
account so that it matches the
Sublevel of the other account. For
more information, see “Merging
Accounts.”

Class No requirements NA.

Customers 1. Only one of the customer/customer jobs can
have child elements.

2. You cannot merge a customer and a vendor.

1. If you merge customers, only one
of the customers can have customer
jobs. If you merge customer jobs,
only one of them can have children
(sub-jobs).

If merging customers and both
customers have jobs, you must move
jobs from the merge-from customer
to the “merge-to” customer before
invoking ListMerge. Or, you must
make them inactive or delete them.

If merging customer jobs, only one of
them may have child jobs (sub jobs).
If both have children, you must move
child jobs from merge-from object to
the merge-to object BEFORE doing
the merge. Or make them inactive or
delete them.

For more information, see “Merging
Customers.”

2. Cannot change this.

Vendors 1. You cannot merge a customer and a vendor 1. Cannot change this.

354 Chapter 27: Merging Accounts, Customers, Vendors, Classes

(c) 2013 Intuit Inc. All rights reserved.

2. Using the current EditSequence for each account, and their ListIDs, invoke ListMerge

and check the response for success.

Comparing AccountType and Changing Sublevel

The Account object contains an AccountType field. You need to compare this type before

proceeding to merge accounts.

If the AccountType is the same, you next need to determine whether the accounts to be

merged have the same Sublevel (yes, there is a Sublevel field in the Ret!). If Sublevels are

not equal, you need to do an AccountMod on one of them to change its Sublevel--by

changing the ParentRef (or removing it if a Sublevel of 0 is desired).

Code Sample

The following code snippet does a query for two hardcoded accounts, and arbitrarily picks

the first as the “merge-from” account, and the second as the “merge-to” account, and

adjusts the Sublevel accordingly. After the Sublevel is fixed by changing the ParentRef, we

invoke AccountMod to make the changes, store the changed EditSequence, and then do the

list merge.

SessionManager.OpenConnection "", "IDN List Merge Sample"

SessionManager.BeginSession "", omDontCare

Dim ListMerge_Set As IMsgSetRequest

Set ListMerge_Set = SessionManager.CreateMsgSetRequest("US", 7, 0)

ListMerge_Set.Attributes.OnError = roeContinue

‘Do query to get latest Sublevel and EditSequence data for the Accounts:

‘We hardcode the accounts just for convenience

Dim AccountQuery As IAccountQuery

Set AccountQuery = ListMerge_Set.AppendAccountQueryRq

AccountQuery.ORAccountListQuery.FullNameList.Add "Office Supplies:Paper

Reams"

AccountQuery.ORAccountListQuery.FullNameList.Add "Office Supplies"

Dim ListMergeAddResp As IMsgSetResponse

Set ListMergeAddResp = SessionManager.DoRequests(ListMerge_Set)

‘Process the query response: we need ListID, EditSequence, Sublevel, and

‘of course, AccountType. We’ll store all these in our one-shot method, so

‘be patient with all our variables here

Dim MyResponse As IResponse

Dim AccountRet As IAccountRet

Dim ResponseType As Integer

Dim AccountRetList As IAccountRetList

Merging Accounts 355

(c) 2013 Intuit Inc. All rights reserved.

Dim AccountType_MergeFrom As Integer

Dim AccountType_MergeTo As Integer

Dim Sublevel_MergeTo As String

Dim Sublevel_MergeFrom As String

Dim ListID_MergeFrom As String

Dim ListID_MergeTo As String

Dim EditSequence_MergeTo As String

Dim EditSequence_MergeFrom As String

Dim ParentRef_MergeTo As String

ParentRef_MergeTo = "empty"

Dim ParentRef_MergeFrom As String

ParentRef_MergeFrom = "empty"

Set MyResponse = ListMergeAddResp.ResponseList.GetAt(0)

If (Not MyResponse.Detail Is Nothing) Then

ResponseType = MyResponse.Type.getValue

If (Not ResponseType = rtAccountQueryRs) Then

Exit Sub

End If

End If

‘Store the values from the first account, which we arbitrarily use as the

‘merge from account.

Set AccountRetList = MyResponse.Detail

Set AccountRet = AccountRetList.GetAt(0)

ListID_MergeFrom = AccountRet.ListID.getValue

EditSequence_MergeFrom = AccountRet.EditSequence.getValue

AccountType_MergeFrom = AccountRet.AccountType.getValue

Sublevel_MergeFrom = AccountRet.Sublevel.getValue

‘If Sublevel is 0, there won’t be any ParentRef

If (Not AccountRet.ParentRef Is Nothing) Then

ParentRef_MergeFrom = AccountRet.ParentRef.FullName.getValue

End If

‘Store the values from the second account, which we arbitrarily use as

‘the merge-to account.

Set AccountRet = AccountRetList.GetAt(1)

ListID_MergeTo = AccountRet.ListID.getValue

EditSequence_MergeTo = AccountRet.EditSequence.getValue

AccountType_MergeTo = AccountRet.AccountType.getValue

Sublevel_MergeTo = AccountRet.Sublevel.getValue

If (Not AccountRet.ParentRef Is Nothing) Then

ParentRef_MergeTo = AccountRet.ParentRef.FullName.getValue

End If

‘Now for the checking: AccountTypes and Sublevels must match.

If (Not AccountType_MergeFrom = AccountType_MergeTo) Then

MsgBox "Only accounts of the same AccountType can be merged!)"

Exit Sub

End If

356 Chapter 27: Merging Accounts, Customers, Vendors, Classes

(c) 2013 Intuit Inc. All rights reserved.

‘For convenience only, we just check the condition where merge-from

‘has higher sublevel than merge-to. If merge-to sublevel is 1 or greater,

‘we set the merge-from ParentRef equal to the ParentRef of the merge-to,

as this results in same Sublevel. If merge-to has no ParentRef, we make

merge-from have no ParentRef either.

If (Sublevel_MergeFrom > Sublevel_MergeTo) Then

If (Not ParentRef_MergeTo = "empty") Then

ParentRef_MergeFrom = ParentRef_MergeTo

Else

ParentRef_MergeFrom = "empty"

End If

‘Now Mod the merge-from account, changing it’s ParentRef as needed

ListMerge_Set.ClearRequests

Dim AccountMod As IAccountMod

Set AccountMod = ListMerge_Set.AppendAccountModRq

AccountMod.ListID.setValue ListID_MergeFrom

AccountMod.EditSequence.setValue EditSequence_MergeFrom

If (ParentRef_MergeFrom = "empty") Then

AccountMod.ParentRef.FullName.SetEmpty

Else

AccountMod.ParentRef.FullName.setValue ParentRef_MergeFrom

End If

End If

Set ListMergeAddResp = SessionManager.DoRequests(ListMerge_Set)

‘Process the response to the AccountMod to get the updated EditSequence.

Set MyResponse = ListMergeAddResp.ResponseList.GetAt(0)

If (Not MyResponse.Detail Is Nothing) Then

ResponseType = MyResponse.Type.getValue

If (Not ResponseType = rtAccountModRs) Then

MsgBox "unexpected response type"

Exit Sub

End If

End If

Set AccountRet = MyResponse.Detail

EditSequence_MergeFrom = AccountRet.EditSequence.getValue

‘We have everything we need to do the merge, so let’s do it.

Dim ListMergeAdder As IListMerge

ListMerge_Set.ClearRequests

Set ListMergeAdder = ListMerge_Set.AppendListMergeRq

ListMergeAdder.ListMergeType.setValue lmtAccount

ListMergeAdder.MergeFrom.ListID.setValue ListID_MergeFrom

ListMergeAdder.MergeFrom.EditSequence.setValue EditSequence_MergeFrom

ListMergeAdder.MergeTo.ListID.setValue ListID_MergeTo

ListMergeAdder.MergeTo.EditSequence.setValue EditSequence_MergeTo

Set ListMergeAddResp = SessionManager.DoRequests(ListMerge_Set)

‘Take a peek at what happened

MsgBox ListMergeAddResp.ToXMLString

SessionManager.EndSession

SessionManager.CloseConnection

Merging Classes 357

(c) 2013 Intuit Inc. All rights reserved.

Merging Classes

The following sample code merges two classes:

Dim qbSessionManager As QBSessionManager

Dim msgSetRequest As IMsgSetRequest

qbSessionManager = New QBSessionManager()

qbSessionManager.OpenConnection2("", "BocaLupa",

ENConnectionType.ctLocalQBD)

qbSessionManager.BeginSession("", ENOpenMode.omDontCare)

msgSetRequest = qbSessionManager.CreateMsgSetRequest("US", 8, 0)

msgSetRequest.Attributes.OnError = ENRqOnError.roeStop

Dim classMerj As IListMerge

classMerj = msgSetRequest.AppendListMergeRq

classMerj.ListMergeType.SetValue(ENListMergeType.lmtClass)

classMerj.MergeFrom.ListID.SetValue("80000001-1232787304")

classMerj.MergeFrom.EditSequence.SetValue("1232787304")

classMerj.MergeTo.ListID.SetValue("80000002-1232787304")

classMerj.MergeFrom.EditSequence.SetValue("1231787354")

And the same thing in XML:

<?xml version="1.0" ?>

<?qbxml version="8.0"?>

<QBXML>

<QBXMLMsgsRq onError = "stopOnError">

<ListMergeRq requestID = "0">

<ListMergeType>Class</ListMergeType>

<MergeFrom>

<ListID>80000001-1232787304</ListID>

<EditSequence>1232787304</EditSequence>

</MergeFrom>

<MergeTo>

<ListID>80000002-1232787304</ListID>

<EditSequence>1232787304</EditSequence>

</MergeTo>

</ListMergeRq>

</QBXMLMsgsRq>

</QBXML>

Merging Customers

To merge two customers/customer jobs,

1. See if both customers/jobs have children. To do this, use a customer query with a

NameFilter that has its MatchCriterion set to “Contains” and the Name element set to

358 Chapter 27: Merging Accounts, Customers, Vendors, Classes

(c) 2013 Intuit Inc. All rights reserved.

the full name of the customer or customer job. This will return you the customer/

customer job and all child jobs of that customer/customer job.

2. If both customer/jobs have children, move all the children of the move-from customer/

job to the merge-to customer/job. To do this, do a CustomerMod on each child job,

changing the ParentRef from the merge-from customer/job to the merge-to customer/

job. Alternatively, you could do a CustomerMod on each child job and make it inactive

by setting the IsActive field to False. Or, to be more extreme, you could do a ListDel on

each child job, but that is not recommended.

3. Using the ListIDs and recent EditSequence from merge-from and merge-to customer/

jobs, invoke the ListMerge request

Code Sample

The following code snippets show to do the various tasks you’ll need to do, building a

customer query to look for child jobs, changing the ParentRef in a child job so it points to

the merge-to customer, and building the ListMerge request.

Building the CustomerQuery

Here is a snippet that builds customer query to look for child jobs for the customer job

Jacobsen, Doug:Kitchen. The query will return Jacobsen, Doug:Kitchen and any child jobs

because those child jobs will have Jacobsen, Doug:Kitchen within their fullname.

SessionManager.OpenConnection "", "IDN List Merge Sample"

SessionManager.BeginSession "", omDontCare

Dim ListMerge_Set As IMsgSetRequest

Set ListMerge_Set = SessionManager.CreateMsgSetRequest("US", 7, 0)

ListMerge_Set.Attributes.OnError = roeContinue

Dim custQuery As ICustomerQuery

Set custQuery = ListMerge_Set.AppendCustomerQueryRq

custQuery.ORCustomerListQuery.CustomerListFilter.ORNameFilter.NameFilter.Ma

tchCriterion.setValue mcContains

custQuery.ORCustomerListQuery.CustomerListFilter.ORNameFilter.

NameFilter.Name.setValue "Jacobsen, Doug:Kitchen"

Dim ListMergeSampleResp As IMsgSetResponse

Set ListMergeSampleResp = SessionManager.DoRequests(ListMerge_Set)

Changing the ParentRef of a customer job

If the customer query turns up child jobs, and you have child jobs in both merge-to and

merge-from customer/jobs, you need to change the ParentRef in each merge-from child job

so that it points to the merge-to customer. The following code snippet shows the

CustomerMod used to change this.

SessionManager.OpenConnection "", "IDN List Merge Sample"

SessionManager.BeginSession "", omDontCare

Merging Vendors 359

(c) 2013 Intuit Inc. All rights reserved.

Dim ListMerge_Set As IMsgSetRequest

Set ListMerge_Set = SessionManager.CreateMsgSetRequest("US", 7, 0)

ListMerge_Set.Attributes.OnError = roeContinue

Dim custMod As ICustomerMod

Set custMod = ListMerge_Set.AppendCustomerModRq

‘We’re modifying one of the child jobs

custMod.EditSequence.setValue "1197731900"

custMod.ListID.setValue "800000AA-1197731900"

‘Changing the ParentRef to point to the merge-to customer/job

custMod.ParentRef.ListID.setValue "1F0000-933272658"

Dim ListMergeSampleResp As IMsgSetResponse

Set ListMergeSampleResp = SessionManager.DoRequests(ListMerge_Set)

Building the ListMerge Request

After any child jobs have been moved over to the merge-to customer/job, you can invoke

the ListMerge request, as shown in the following code snippet:

SessionManager.OpenConnection "", "IDN List Merge Sample"

SessionManager.BeginSession "", omDontCare

Dim ListMerge_Set As IMsgSetRequest

Set ListMerge_Set = SessionManager.CreateMsgSetRequest("US", 7, 0)

ListMerge_Set.Attributes.OnError = roeContinue

Dim ListMergeAdder As IListMerge

Set ListMergeAdder = ListMerge_Set.AppendListMergeRq

ListMergeAdder.ListMergeType.setValue lmtCustomer

ListMergeAdder.MergeFrom.ListID.setValue "80000007-1188956785"

ListMergeAdder.MergeFrom.EditSequence.setValue "1188956785"

ListMergeAdder.MergeTo.ListID.setValue "80000002-1188956165"

ListMergeAdder.MergeTo.EditSequence.setValue "1188956165"

Dim ListMergeSampleResp As IMsgSetResponse

Set ListMergeSampleResp = SessionManager.DoRequests(ListMerge_Set)

Merging Vendors

There aren’t any tricks to merging vendors. Just supply the list IDs and the latest

EditSequences to the ListMerge request.

360 Chapter 27: Merging Accounts, Customers, Vendors, Classes

(c) 2013 Intuit Inc. All rights reserved.

Overview of QuickBooks Assembly Items and Build Assembly 361

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 28 1

USING ASSEMBLY ITEM AND BUILDASSEMBLY FUNCTIONALITY 1

IMPORTANT

If you are testing an application that uses assembly item and
building assembly features, we recommend that you do not
use the sample companies provided with QuickBooks. These
sample companies have future dates in them that can yield
nexpected results with regard to on hand quantities. You
should create your own sample company with current dates.

Integrated applications running on Premier and Enterprise editions can use the SDK to add

assembly items (ItemInventoryAssemblyAddRq) and then “build” those assembly items

(BuildAssemblyAddRq). We put “build” in quotations because the BuildAssembly

transaction does not actually build the assembly, of course, but simply causes the

accounting transaction that enables a business to track finished goods inventory and the

component item inventory accurately.

Although the SDK ItemInventoryAssemblyAdd (available since SDK 2.0) and

BuildAssemblyAdd (available starting in QuickBooks 2006) works only on Premier and

Enterprise, your application may be able run on other editions of QuickBooks with

inventory features if your application simply views, edits, sells, or reports on existing

assembly items or BuildAssembly transactions. (The OSR lists the required SDK spec

version required for each of these ItemInventoryAssembly* and BuildAssembly* requests.)

In order to use the SDK to add assembly items and build assemblies, you first need to know

a few things about item assemblies in QuickBooks. So we’ll start off with some background

information before getting into creating and building assembly items, along with modifying

and querying for them.

Overview of QuickBooks Assembly Items and Build Assembly

An assembly item in QuickBooks is an inventory-tracked item made up of individual

inventory items (inventory “parts” in the UI) and/or other assembly items as shown in

Figure 28-1 on page 362. The items and/or assemblies that make up the assembly are called

components. All of the components in an assembly must first be defined in the QuickBooks

company as inventory items or assembly items before you can use them in an assembly.

(Services cannot be used as a component part.)

362 Chapter 28: Using Assembly Item and BuildAssembly Functionality

(c) 2013 Intuit Inc. All rights reserved.

Figure 28-1 Assembly item and its component parts

How many components can an assembly have? For Premier, an assembly can have a

maximum of 100 components. For Enterprise, the maximum is 500 components.

When you add an assembly item (ItemInventoryAssemblyAddRq in the SDK) you produce

no affect on any inventory levels, since the assembly item serves as a “definition” that

specifies how the assembly is to be built, which accounts are to be used, the sale price, and

so forth. Inventory is not affected until you perform a Build Assembly transaction either via

the QuickBooks UI or via the SDK BuildAssemblyAdd request.

As a result of the build assembly transaction, the assembly item units are incremented in

inventory and the component parts or component assemblies are decremented from

inventory.

NOTE

If you enter a quantity on hand in the New Item window while
defining a new assembly item, this transaction is recorded as
an inventory adjustment where assembly units are added to
inventory but components are not deducted from inventory.

Notice that inventory permissions are required to add assembly items and build assemblies.

You Must Have Sufficient Components for the BuildAssembly

In the QuickBooks UI, you have the option of creating a pending build if there aren’t

enough components in inventory to build the assembly in the quantities specified.

Beginning with qbXML 7.0 and QuickBooks 2008, you can also do this via the SDK using

the MarkPendingIfRequired.

If you don’t use MarkPendingIfRequired and you invoke BuildAssemblyAdd with a

quantity that would exceed the on-hand quantities of any component, you get a status code

error of 3370 and a status message indicating that there are insufficient components for the

request.

Overview of QuickBooks Assembly Items and Build Assembly 363

(c) 2013 Intuit Inc. All rights reserved.

You will get the same status code error 3370 if you attempt to use BuildAssemblyMod to

remove the pending status from a pending BuildAssembly transaction (created via the UI) if

you lack sufficient component quantities, because this is effectively performing a

BuildAssembly.

QB Activities that Change BuildAssembly Transactions into Pending

There are circumstances where even a finalized BuildAssembly transaction can be changed

into a pending transaction by other activities in QuickBooks, whether from the UI or from

the SDK.

Finalized builds change to pending whenever the quantity of at least one component drops

below the quantity needed to build the specified number of assemblies on the build

transaction date.

This means that if a QB user or integrated application changes past inventory quantities or

the dates of purchase orders, invoices, or sales receipts in ways that result in QuickBooks

built assemblies lacking sufficient components on the build date, the affected assembly

builds would change from finalized to pending.

Consequences of Modifying an Existing Inventory Assembly Item

Assembly definition details, such as the list of and quantity of components, can be modified

at any time either in the UI or via the SDK. If an assembly item is modified while there is a

pending build for that assembly, at the time when the pending build is actually built

QuickBooks prompts the user to build either with the most recent assembly definition or

with the definition that is currently in effect for that build.

Keep in mind that such modifications to the assembly (revision history) is not tracked; if

you need to build a previous version of an assembly, you need to modify the assembly

again to reflect the desired component list. One feature that can help you reconstruct a

previously used assembly item is to look up a past BuildAssembly transaction

(BuildAssemblyQuery in the SDK) and use the component list from that transaction. The

component list for the transaction is saved even if the assembly item’s component list is

changed subsequent to the BuildAssembly transaction. However, this approach requires the

QuickBooks user or the integrated application to note and keep track of whichever

BuildAssembly transaction (and thus its component list) is important for revision history

purposes.

Finally, keep in mind that changing quantity on hand for assemblies adjusts the overall

number of assembly units in inventory, but it does not change the quantity on hand of

components (inventory part items or assemblies) used in the parent assembly.

364 Chapter 28: Using Assembly Item and BuildAssembly Functionality

(c) 2013 Intuit Inc. All rights reserved.

Impact of SalesReceipts and Invoices on Assemblies in Inventory

If a QB user or application attempts to sell via sales receipt or invoice more assembly units

than are available in inventory, the UI behavior varies slightly from the SDK. In the UI, the

user is warned that quantities are insufficient to fulfill the order: the user can respond by

accepting or cancelling. In the SDK, the SalesReceiptAdd or InvoiceAdd simply adds the

SalesReceipt or Invoice without the warning. But for both SDK and UI (assuming the UI

user opts to continue with the transaction), the quantity on hand for the specified assembly

changes to a negative value.

NOTE

When assembly items appear on a UI form (for example, a
sales receipt or an invoice) or a report, their component items
are not displayed. Only the assembly name, description, and
price are displayed.

Notice that if you modify the component list of an assembly and build that assembly while

you still have a quantity of a previous version in stock, QuickBooks cannot distinguish

between these two versions at the time you make a sale. The typical recommendation is to

either sell out of one version before building another version, or “disassemble” the on hand

inventory of the previous build. We’ll show you how to do that shortly.

Either approach enables a QB user or integrated application to track the versions by the sale

date, if the user or application keeps track of this date.

Disassembling Inventory Assemblies

As noted previously, in some instances you may need to disassemble inventory assemblies,

for example, if you are changing the component list and want to maintain only one version

of the assembly in inventory.

There are several ways to disassemble inventory assemblies and return component items to

inventory. You can:

• Open the build transaction that built the assembly you want to disassemble and reduce

the quantity to build in the Build Assemblies window. The result is the same as if you

had only built the smaller number of assemblies in the first place. The quantity of

assembly units in inventory decreases, and the quantity of component inventory parts is

increased accordingly.

Note: Build transactions with changed amounts will display on the audit
trail report.

• Adjust Quantity/Value on Hand for each assembly component and the assembly item.

• Delete the build transaction. The quantity of assembly units in inventory is decreased

and the quantity of component inventory parts is increased accordingly. This method

completely removes the build transaction from QuickBooks and should not be used if

you want to maintain a record of the transaction.

Adding an Inventory Assembly Item 365

(c) 2013 Intuit Inc. All rights reserved.

Getting BuildAssembly and Assembly Item Reports

You can use the SDK’s CustomSummaryReportQuery or CustomDetailReportQuery to get

BuildAssembly and item assembly reports. To get BuildAssembly reports, use the

ReportTxnTypeFilter with the TxnFilter set to BuildAssembly. To get assembly item

reports, use the ReportItemFilter with the ItemTypeFilter set to InventoryAndAssembly.

Adding an Inventory Assembly Item

To get an idea of how to add an assembly item in the SDK, take a look at how it’s done in

the UI (see Figure 28-2 on page 366). The UI supplies the New Item form that allows the

user to add a new assembly item. You can get there in the UI from the main QuickBooks

menubar by selecting Lists->Item List->Item->New.

366 Chapter 28: Using Assembly Item and BuildAssembly Functionality

(c) 2013 Intuit Inc. All rights reserved.

Figure 28-2 Understanding the New Assembly item form

In the upper left of the form, notice the item Type pulldown provided for the user to select

from the various supported types: assembly item is shown as the chosen type in the figure.

In the SDK however, if you want to add an assembly item, you use a request specific to

assembly item: ItemInventoryAssemblyAdd.

The OSR listing for ItemInventoryAssemblyAdd is shown in Figure 28-3 on page 367.

Adding an Inventory Assembly Item 367

(c) 2013 Intuit Inc. All rights reserved.

Figure 28-3 ItemInventoryAssemblyAdd OSR Listing

The SDK tags shown in the OSR listing for ItemInventoryAssemblyAdd provide the same

functionality as the UI’s New Item form for assembly items. Most of these are

straightforward: Name maps to the UI’s Item Name/Number, IsActive maps to the UI’s

Item is Inactive checkbox, BuildPoint, QuantityOnHand, TotalValue, InventoryDate map to

the Build Point, On Hand, Total Value, and As Of values in the UI, respectively.

Some other SDK elements might need a bit more explanation, so we’ll describe some of the

less obvious elements in the following sections.

368 Chapter 28: Using Assembly Item and BuildAssembly Functionality

(c) 2013 Intuit Inc. All rights reserved.

About the “Subitem Of” (ParentRef)

The ParentRef in the qbXML for adding an assembly item is the equivalent of the Subitem

Of checkbox and its related item pulldown menu, which is activated when the user checks

the checkbox. The difference is that the ParentRef (containing either the ListID or the

FullName of the parent assembly) represents the choice of a parent assembly as well as the

choice to make the new assembly a subitem of another assembly in the first place.

What is a subitem? It is simply a way to include your assembly in an assembly hierarchy

that you want to be visible in QuickBooks lists and reports. For example, if you want the

QuickBooks item list to display a main item listing of “Alpha Airplane Kit” with subitems

of “Wings”, “Engine”, “Rudder” and so forth (see Figure 28-4 on page 368), you would

make the Wings assembly a subitem of Alpha Airplane Kit, the Engine assembly a subitem

of “Alpha Airplane Kit, and so forth.

Figure 28-4 Making assemblies visible as hierarchies in QB Lists

The main point to keep in mind is that checking “Subitem Of” or the (SDK equivalent

ParentRef) is strictly used for list and report visibility purposes, to show logical

arrangements of assemblies that, to QuickBooks, are otherwise internally unrelated

assemblies. It does NOT make your new assembly a component of the another assembly.

(We’ll show you how to do that shortly.) Your BuildAssembly of the parent assembly will

not result in the building of any subitem assemblies.

About the “I purchase...” Checkbox (PrefVendorRef, etc.)

The “I purchase this...from a vendor” checkbox is used if you have an assembly item you

normally build, but occasionally need to purchase from a vendor, for example if you are

short quantities of that assembly and need to acquire more quickly.

If you supply any one or any combination of the PrefVendorRef, the PurchaseDesc, or the

PurchaseCost tags, you cause the same thing to happen in QuickBooks as occurs in the UI

when a user checks the “I purchase this assembly item from a vendor” checkbox.

Adding an Inventory Assembly Item 369

(c) 2013 Intuit Inc. All rights reserved.

When the user does this in the UI, a frame appears that allows the purchase cost, purchase

description, and preferred vendor to be specified. The tags already mentioned in the

preceding paragraph allow you to fill out this same information in the SDK. Notice that you

need not supply the purchase cost when you create the assembly item, since it can be added

later when you receive the actual cost.

Adding an ItemInventoryAssembly in qbXML

Listing 28-1 shows how to create a new assembly item. In the listing, the assembly named

Widget G has a component list of the two existing items (Lrge Bolt and Lrge Nut) listed

under the two ItemInventoryAssemblyLine tags. Our sample happens to use the optional

sales tax tag and the default COGS account.

______Listing 28-1 Adding an ItemInventoryAssembly

<?qbxml version="5.0"?>

<QBXML>

<QBXMLMsgsRq onError = "stopOnError">

<ItemInventoryAssemblyAddRq requestID = "2">

<ItemInventoryAssemblyAdd>

<Name>Widget G</Name>

<SalesTaxCodeRef>

<FullName>Tax</FullName>

</SalesTaxCodeRef>

<SalesDesc>Misc Widgets</SalesDesc>

<SalesPrice>10.00</SalesPrice>

<IncomeAccountRef>

<FullName>Sales Income</FullName>

</IncomeAccountRef>

<COGSAccountRef>

<FullName>Cost Of Goods Sold</FullName>

</COGSAccountRef>

<AssetAccountRef>

<FullName>Inventory Asset</FullName>

</AssetAccountRef>

<BuildPoint>10</BuildPoint>

<ItemInventoryAssemblyLine>

<ItemInventoryRef>

<FullName>Lrge Bolt</FullName>

</ItemInventoryRef>

<Quantity>2</Quantity>

</ItemInventoryAssemblyLine>

<ItemInventoryAssemblyLine>

<ItemInventoryRef>

<FullName>Lrge Nut</FullName>

</ItemInventoryRef>

<Quantity>2</Quantity>

</ItemInventoryAssemblyLine>

</ItemInventoryAssemblyAdd>

</ItemInventoryAssemblyAddRq>

</QBXMLMsgsRq>

</QBXML>

370 Chapter 28: Using Assembly Item and BuildAssembly Functionality

(c) 2013 Intuit Inc. All rights reserved.

Adding an Assembly Item in QBFC

Listing 28-2 shows a self-contained procedure that opens a connection with QuickBooks,

adds an assembly item to the currently open company, shows the results, and closes the

connection.

The sample is straightforward except for one tricky part, which is appending the component

items in the line item object as per the following lines:

Dim AssemblyLineItem As IItemInventoryAssemblyLine

'Append each line item of the component list separately. Append returns

'the line item object, which you then set with the values you want

Set AssemblyLineItem =

ItemAssemblyAdd.ItemInventoryAssemblyLineList.Append

Notice that the Append method returns the line item object, which you then fill its key

fields ItemRef and Quantity. What happens if you were to try it this way:

ItemAssemblyAdd.ItemInventoryAssemblyLineList.Append.Quantity.setValue(2)

ItemAssemblyAdd.ItemInventoryAssemblyLineList.Append.Quantity.setValue(2)

‘NOPE! Invalid.

you’ll get a runtime error because you just added two line items to the list, one of which has

a valid ItemInventoryRef, and one that doesn’t--with the faulty line having only a Quantity

field. If you were print out the XML from this faulty attempt (using ToXMLString on the

IMsgSetRequest object), here’s what the resulting bad XML would look like:

<ItemInventoryAssemblyLine>

<ItemInventoryRef>

<FullName>Big Bolt</FullName>

</ItemInventoryRef>

</ItemInventoryAssemblyLine>

<ItemInventoryAssemblyLine>

<Quantity>2</Quantity>

</ItemInventoryAssemblyLine>

which won’t work at all. Instead, as shown below (and in Listing 28-2), what you need to

do is invoke Append on the Line Item list with the Append method returning the line item

object. Then just set the ItemRef and Quantity properties on that line item.

Dim AssemblyLineItem As IItemInventoryAssemblyLine

'Append each line item of the component list separately. Append returns

'the line item object, which you then set with the values you want

Set AssemblyLineItem = ItemAssemblyAdd.ItemInventoryAssemblyLineList.Append

AssemblyLineItem.ItemInventoryRef.FullName.setValue ("Big Bolt")

AssemblyLineItem.Quantity.setValue (2)

Set AssemblyLineItem = ItemAssemblyAdd.ItemInventoryAssemblyLineList.Append

AssemblyLineItem.ItemInventoryRef.FullName.setValue ("Big Nut")

AssemblyLineItem.Quantity.setValue (2) '

Adding an Inventory Assembly Item 371

(c) 2013 Intuit Inc. All rights reserved.

______Listing 28-2 Adding Assembly Items in QBFC

Public Sub QBFC_AddItemInvAssembly()

Dim SessionManager As QBSessionManager

Set SessionManager = New QBSessionManager

SessionManager.OpenConnection "", "IDN Add Item Inventory Assembly Sample"

SessionManager.BeginSession "", omDontCare

Dim requestMsgSet As IMsgSetRequest

Set requestMsgSet = SessionManager.CreateMsgSetRequest("US", 5, 0)

' Initialize the message set request's attributes

requestMsgSet.Attributes.OnError = roeStop

' Add the request to the message set request object

Dim ItemAssemblyAdd As IItemInventoryAssemblyAdd

Set ItemAssemblyAdd = requestMsgSet.AppendItemInventoryAssemblyAddRq

'Set the properties in the assembly object

ItemAssemblyAdd.Name.setValue ("Widget Y")

ItemAssemblyAdd.SalesTaxCodeRef.FullName.setValue ("Tax")

ItemAssemblyAdd.SalesDesc.setValue ("Misc Widgets")

ItemAssemblyAdd.SalesPrice.setValue (10#)

ItemAssemblyAdd.IncomeAccountRef.FullName.setValue ("Sales Income")

ItemAssemblyAdd.COGSAccountRef.FullName.setValue ("Cost of Goods Sold")

ItemAssemblyAdd.AssetAccountRef.FullName.setValue ("Inventory Asset")

ItemAssemblyAdd.BuildPoint.setValue (10)

Dim AssemblyLineItem As IItemInventoryAssemblyLine

'Append each line item of the component list separately. Append returns

'the line item object, which you then set with the values you want

Set AssemblyLineItem = ItemAssemblyAdd.ItemInventoryAssemblyLineList.Append

AssemblyLineItem.ItemInventoryRef.FullName.setValue ("Big Bolt")

AssemblyLineItem.Quantity.setValue (2)

Set AssemblyLineItem = ItemAssemblyAdd.ItemInventoryAssemblyLineList.Append

AssemblyLineItem.ItemInventoryRef.FullName.setValue ("Big Nut")

AssemblyLineItem.Quantity.setValue (2) '

Perform the request and obtain a response from QuickBooks

Dim responseMsgSet As IMsgSetResponse

Set responseMsgSet = SessionManager.DoRequests(requestMsgSet)

‘Show the results

MsgBox responseMsgSet.ToXMLString

' Close the session and connection with QuickBooks.

SessionManager.EndSession

SessionManager.CloseConnection

End Sub

372 Chapter 28: Using Assembly Item and BuildAssembly Functionality

(c) 2013 Intuit Inc. All rights reserved.

Modifying an Existing Inventory Assembly Item

An assembly item, as mentioned earlier in this chapter can be edited at any time via the UI

or the SDK, but any modifications to the assembly are not tracked. Accordingly, if you are

making changes to the component list used, you may want to consider ways to make it

easier to track the revision history yourself, perhaps by selling out of the existing stock first,

or disassembling the existing assemblies before changing the component list.

Modifying an Assembly Item in qbXML

Listing 28-3 shows a mod request that changes the BuildPoint of the specified assembly

item.

_____ Listing 28-3 Constructing an ItemInventoryAssemblyMod request in qbXML

<?xml version="1.0" ?>

<?qbxml version="5.0"?>

<QBXML>

<QBXMLMsgsRq onError = "stopOnError">

<ItemInventoryAssemblyModRq requestID = "0">

<ItemInventoryAssemblyMod>

<ListID>1B0000-1130277147</ListID>

<EditSequence>1130433150</EditSequence>

<BuildPoint>20</BuildPoint>

</ItemInventoryAssemblyMod>

</ItemInventoryAssemblyModRq>

</QBXMLMsgsRq>

</QBXML>

Modifying an Assembly Item in QBFC

Listing 28-4 shows a self-contained procedure that

• Opens a connection with QuickBooks

• Queries for all inactive and active assembly items that contain “Panel” in the FullName,

and that were modified within the specified date range.

• Arbitrarily picks the first assembly item from the query and saves its ListID and edit

sequence for the upcoming mod request

• Issues a mod request using the ListID and edit sequence obtained in the query,

modifying the memo and the quantity

• Shows the results, and closes the connection.

Notice that the query specifies that only ListID and EditSequence (via IncludeRetElement)

is to be returned in the response because that is all we need from the query.

Modifying an Existing Inventory Assembly Item 373

(c) 2013 Intuit Inc. All rights reserved.

______Listing 28-4 Constructing an ItemInventoryAssemblyMod request in QBFC

Public Sub QBFC_ModItemAssembly()

Dim SessionManager As QBSessionManager

Set SessionManager = New QBSessionManager

SessionManager.OpenConnection "", "IDN Mod Item Assembly Sample"

SessionManager.BeginSession "", omDontCare

Dim requestMsgSet As IMsgSetRequest

Set requestMsgSet = SessionManager.CreateMsgSetRequest("US", 5, 0)

' Initialize the message set request's attributes

requestMsgSet.Attributes.OnError = roeStop

'First we query QB for active and intactive assemblies within

‘a date range with the fullname containing “Panel”

Dim ItemAssmblyQuery As IItemInventoryAssemblyQuery

Set ItemAssmblyQuery = requestMsgSet.AppendItemInventoryAssemblyQueryRq

ItemAssmblyQuery.IncludeRetElementList.Add ("EditSequence")

ItemAssmblyQuery.IncludeRetElementList.Add ("ListID")

ItemAssmblyQuery.ORListQuery.ListFilter.ActiveStatus.setValue (asAll)

ItemAssmblyQuery.ORListQuery.ListFilter.FromModifiedDate.

setValue "2005-10-01", True

ItemAssmblyQuery.ORListQuery.ListFilter.ToModifiedDate.

setValue "2005-10-27", True

ItemAssmblyQuery.ORListQuery.ListFilter.ORNameFilter.NameFilter.

MatchCriterion.setValue (mcContains)

ItemAssmblyQuery.ORListQuery.ListFilter.ORNameFilter.NameFilter.

Name.setValue ("Panel")

Dim responseMsgSet As IMsgSetResponse

Set responseMsgSet = SessionManager.DoRequests(requestMsgSet)

Dim response As IResponse

' Response list contains one response, because we made one request

Set response = responseMsgSet.ResponseList.GetAt(0)

'make sure there is data first

If response.Detail Is Nothing Then

MsgBox "No Detail available"

Exit Sub

End If

'This is a query, so the Detail is a ret list

Dim ItemAssmblyRetList As IItemInventoryAssemblyRetList

Dim ItemAssmblyRet As IItemInventoryAssemblyRet

Set ItemAssmblyRetList = response.Detail

'Potentially many assemblies in the retlist: we get the first one

'for convenience: you'll do something smarter or let the user pick

Set ItemAssmblyRet = ItemAssmblyRetList.GetAt(0)

374 Chapter 28: Using Assembly Item and BuildAssembly Functionality

(c) 2013 Intuit Inc. All rights reserved.

'Save the ListID and EditSequence: we need 'em for our mod request

Dim ListID As String

Dim EditSeq As String

ListID = ItemAssmblyRet.ListID.getValue

EditSeq = ItemAssmblyRet.EditSequence.getValue

‘Clear out the message set so we can re-stuff it with our mod request

requestMsgSet.ClearRequests

'Add the request to the message set request object

Dim ItemAssmblyMod As IItemInventoryAssemblyMod

Set ItemAssmblyMod = requestMsgSet.AppendItemInventoryAssemblyModRq

'Set the properties in the BuildAssembly mod object

ItemAssmblyMod.ListID.setValue (ListID)

ItemAssmblyMod.EditSequence.setValue (EditSeq)

ItemAssmblyMod.BuildPoint.setValue (20)

'Perform the request and obtain a response from QuickBooks

Set responseMsgSet = SessionManager.DoRequests(requestMsgSet)

MsgBox responseMsgSet.ToXMLString

'Close the session and connection with QuickBooks.

SessionManager.EndSession

SessionManager.CloseConnection

End Sub

Querying for Inventory Assembly Items

Figure 28-5 shows the query filters you can use. If you’re familiar with SDK queries, there

is nothing special or tricky about this particular query. If you’re not familiar with SDK

queries, you might want to take a quick look at Chapter 4, “Specifying Authorization

Preferences,” which provides general information on queries, such as using iterators for

large query returns, using IncludeRetElement to get only the data you need, using various

types of filters, and so on.

The ActiveStatus filter is useful if you need to make your query retrieve any inactive

assembly items. (By default only active items are returned in the query.) Specify the value

“All” to get all assemblies, both active or inactive, or “InactiveOnly” to get only inactive

items.

Querying for Inventory Assembly Items 375

(c) 2013 Intuit Inc. All rights reserved.

Figure 28-5 ItemInventoryAssemblyQuery OSR listing

Querying for Assembly Items in qbXML

Listing 28-5 shows a sample query in qbXML, where we search for all active and inactive

item assemblies that contain the name “Panel”, and that were last modified in the specified

date range,

______Listing 28-5 Constructing an ItemInventoryAssemblyQuery Request in qbXML

<?xml version="1.0" ?>

<?qbxml version="5.0"?>

<QBXML>

<QBXMLMsgsRq onError = "stopOnError">

<ItemInventoryAssemblyQueryRq requestID = "0">

<ActiveStatus>All</ActiveStatus>

<FromModifiedDate>2005-10-01</FromModifiedDate>

<ToModifiedDate>2005-10-27</ToModifiedDate>

<NameFilter>

<MatchCriterion>Contains</MatchCriterion>

<Name>Panel</Name>

</NameFilter>

</ItemInventoryAssemblyQueryRq>

</QBXMLMsgsRq>

</QBXML>

376 Chapter 28: Using Assembly Item and BuildAssembly Functionality

(c) 2013 Intuit Inc. All rights reserved.

Querying for Assembly Items in QBFC

We’ve already shown an example of constructing an ItemInventoryAssemblyQuery and

processing some of its response data in Listing 28-4.

Adding a BuildAssembly Transaction

Adding new BuildAssembly transactions are supported in QuickBooks Premier and

Enterprise. In the QuickBooks UI for these editions, you add a new BuildAssembly by

clicking on the Build Assembly icon in the main navigator (Figure 28-6):

Figure 28-6 The Build Assemblies UI icon

Clicking on the icon displays the Build Assemblies form (Figure 28-7):

Adding a BuildAssembly Transaction 377

(c) 2013 Intuit Inc. All rights reserved.

Figure 28-7 The UI Build Assemblies form

In the upper left of Figure 28-7, notice the assembly item pulldown, from which the user

selects the assembly to build. In the figure, the Metal Panel Assembly has been selected.

Notice that the quantity data about this item is automatically filled in on the form. The user

supplies only the quantity to build, possibly also the build reference number (if the user

doesn’t want the default number), the transaction date and any build notes in the Memo

field.

The SDK provides functionality to duplicate most of the features on this particular form:

• BuildAssemblyQuery can be used in a selection list like the one here, with the quantity

data (along with other data) returned in the query response for a selected assembly.

• ItemAssembliesCanBuildQuery returns the number of units you can build for the

specified assembly.

• BuildAssemblyAdd causes the actual Build Assembly transaction to occur, once the

required data is supplied.

378 Chapter 28: Using Assembly Item and BuildAssembly Functionality

(c) 2013 Intuit Inc. All rights reserved.

However, as noted in the overview section of this chapter, the UI lets you do a pending

build if there are not enough components to build the quantities specified, and in the SDK

you can use the MarkPendingIfRequired to do the same thing. If you must use qbXML 6.0

or less because your application must work on versions of QuickBooks older than QB 2008,

you can alternatively use the ItemAssembliesCanBuildQuery request before you attempt to

invoke BuildAssemblyAdd.

Be careful when supplying your own Ref numbers when creating or editing the

BuildAssembly. QuickBooks does not prevent the same Ref number from being assigned to

more than one BuildAssembly.

Adding a BuildAssembly Transaction in qbXML

Listing 28-6 shows a typical qbXML for building an assembly. The listing shows all of the

possible tags used, if you take a look at the OSR listing for BuildAssemblyAdd (see Figure

28-8).

_____ Listing 28-6 QBXML Sample: Adding A BuildAssembly

<?qbxml version="5.0"?>

<QBXML>

<QBXMLMsgsRq onError="continueOnError">

<BuildAssemblyAddRq>

<BuildAssemblyAdd>

<ItemInventoryAssemblyRef>

<FullName>Metal Panel Assembly</FullName>

</ItemInventoryAssemblyRef>

<TxnDate>2005-10-26</TxnDate>

<Memo>Built from component list 1</Memo>

<QuantityToBuild>2</QuantityToBuild>

</BuildAssemblyAdd>

</BuildAssemblyAddRq>

</QBXMLMsgsRq>

</QBXML>

Figure 28-8 OSR listing for BuildAssemblyAdd

Adding a BuildAssembly Transaction 379

(c) 2013 Intuit Inc. All rights reserved.

Notice that you can perform a build of only one assembly item per BuildAssemblyAddRq,

as indicated in the figure above.

The response from the qbXML sample above would be as shown in Figure 28-9. (Only part

of the response is shown.)

Figure 28-9 Sample Response from BuildAssemblyAdd

Notice that the response contains the component list showing all the inventory items and

assemblies, along with the quantities used in the built assembly transaction. Notice also that

the IsPending field is set to False. It will always be False when you do a

BuildAssemblyAdd because pending builds are not supported in this request.

Finally, notice the various Quantity fields: QuantityToBuild (what you just built in the

BuildAssemblyAdd request), QuantityCanBuild (the max number that you could build of

this assembly), QuantityOnHand, and QuantityOnSalesOrder. These last two quantities are

important for determining how many assembly units are actually available: you subtract the

on-sales order quantity from the on-hand quantity to get the number of units that are

actually available, with all quantities snapshotted as of the TxnDate specified in the request.

380 Chapter 28: Using Assembly Item and BuildAssembly Functionality

(c) 2013 Intuit Inc. All rights reserved.

Adding a BuildAssembly Transaction in QBFC

Listing 28-7 shows a complete self-contained procedure that opens a connection with

QuickBooks, builds the specified assembly item in the currently open company, shows the

results, and closes the connection. The sample accepts the default ref number that will be

assigned by QuickBooks, but specifies the build date.

_____ Listing 28-7 Building an Assembly in QBFC

Public Sub QBFC_AddBuildAssembly()

Dim SessionManager As QBSessionManager

Set SessionManager = New QBSessionManager

SessionManager.OpenConnection "", "IDN Add Build Assembly Sample"

SessionManager.BeginSession "", omDontCare

Dim requestMsgSet As IMsgSetRequest

Set requestMsgSet = SessionManager.CreateMsgSetRequest("US", 5, 0)

' Initialize the message set request's attributes

requestMsgSet.Attributes.OnError = roeStop

' Add the request to the message set request object

Dim BuildAssmblyAdd As IBuildAssemblyAdd

Set BuildAssmblyAdd = requestMsgSet.AppendBuildAssemblyAddRq

'Set the properties in the BuildAssembly add object

BuildAssmblyAdd.ItemInventoryAssemblyRef.FullName.setValue ("Metal Panel Assembly")

BuildAssmblyAdd.TxnDate.setValue ("2005-10-26")

BuildAssmblyAdd.Memo.setValue ("Build from component list 1")

BuildAssmblyAdd.QuantityToBuild.setValue (2)

' Perform the request and obtain a response from QuickBooks

Dim responseMsgSet As IMsgSetResponse

Set responseMsgSet = SessionManager.DoRequests(requestMsgSet)

MsgBox responseMsgSet.ToXMLString

' Close the session and connection with QuickBooks.

SessionManager.EndSession

SessionManager.CloseConnection

End Sub

Modifying an Existing BuildAssembly Transaction

The OSR listing below (Figure 28-10) shows the available modifications you can make to a

BuildAssembly transaction.

Modifying an Existing BuildAssembly Transaction 381

(c) 2013 Intuit Inc. All rights reserved.

Figure 28-10 BuildAssemblyMod OSR Listing

Notice that along with TxnID, every BuildAssemblyMod requires the edit sequence, which

prevents accidental overwrites to data by ensuring you are saving the most recent version of

the data. This means that before modifying any existing BuildAssembly transaction, you

must first do a BuildAssemblyQuery--even if you already have the TxnID--to get the

current EditSequence.

IMPORTANT

You’ll also want to check for status code 3200 in the response
to your mod request. This code indicates that someone has
modified the transaction since you last retrieved the
transaction from QuickBooks. You’ll have to re-retrieve that
transaction and apply your mods to that newer version.

If the transaction is pending, you can remove the pending status, effectively performing the

build. This mod will work in the SDK only if there are sufficient components for the build

on the TxnDate.

Any fields not explicitly modified in the BuildAssemblyMod request keep their existing

values.

Modifying a BuildAssembly in qbXML

Listing 28-8 shows a BuildAssemblyMod request that sets new values for the Memo and

QuantityToBuild fields. The edit sequence was obtained from a previous

BuildAssemblyQuery.

382 Chapter 28: Using Assembly Item and BuildAssembly Functionality

(c) 2013 Intuit Inc. All rights reserved.

_____ Listing 28-8 Constructing a BuildAssemblyMod in qbXML

<?qbxml version="5.0"?>

<QBXML>

<QBXMLMsgsRq onError="continueOnError">

<BuildAssemblyModRq>

<BuildAssemblyMod>

<TxnID>25-1130282678</TxnID>

<EditSequence>1130282678</EditSequence>

<Memo>Built from component list 2</Memo>

<QuantityToBuild>4</QuantityToBuild>

</BuildAssemblyMod>

</BuildAssemblyModRq>

</QBXMLMsgsRq>

</QBXML>

Modifying an Existing BuildAssembly Transaction 383

(c) 2013 Intuit Inc. All rights reserved.

Modifying a BuildAssembly in QBFC

Listing 28-9 shows a self-contained procedure that

• Opens a connection with QuickBooks

• Queries for build assembly transactions that fall within the specified date range

• Arbitrarily picks the first transaction from the query and saves its TxnID and edit

sequence for the upcoming mod request

• Issues a mod request using the TxnID and edit sequence obtained in the query,

modifying the memo and the quantity

• Shows the results, and closes the connection.

Notice that the query specifies that only TxnID and EditSequence (via IncludeRetElement)

is to be returned in the response because that is all we need from the query.

______Listing 28-9 Querying for a BuildAssembly Transaction and modifying it

Public Sub QBFC_ModBuildAssembly()

Dim SessionManager As QBSessionManager

Set SessionManager = New QBSessionManager

SessionManager.OpenConnection "", "IDN Mod Build Assembly Sample"

SessionManager.BeginSession "", omDontCare

Dim requestMsgSet As IMsgSetRequest

Set requestMsgSet = SessionManager.CreateMsgSetRequest("US", 5, 0)

' Initialize the message set request's attributes

requestMsgSet.Attributes.OnError = roeStop

'First we query QB for build assembly transactions within a date range

Dim BuildAssmblyQuery As IBuildAssemblyQuery

Set BuildAssmblyQuery = requestMsgSet.AppendBuildAssemblyQueryRq

BuildAssmblyQuery.IncludeRetElementList.Add ("EditSequence")

BuildAssmblyQuery.IncludeRetElementList.Add ("TxnID")

BuildAssmblyQuery.ORBuildAssemblyQuery.BuildAssemblyFilter.

ORDateRangeFilter.TxnDateRangeFilter.ORTxnDateRangeFilter.

TxnDateFilter.FromTxnDate.setValue ("2005-10-25")

BuildAssmblyQuery.ORBuildAssemblyQuery.BuildAssemblyFilter.

ORDateRangeFilter.TxnDateRangeFilter.ORTxnDateRangeFilter.

TxnDateFilter.ToTxnDate.setValue ("2005-10-26")

Dim responseMsgSet As IMsgSetResponse

Set responseMsgSet = SessionManager.DoRequests(requestMsgSet)

Dim response As IResponse

' Responselist contains one response, because we made one request

Set response = responseMsgSet.ResponseList.GetAt(0)

384 Chapter 28: Using Assembly Item and BuildAssembly Functionality

(c) 2013 Intuit Inc. All rights reserved.

'Make sure there is data first

If response.Detail Is Nothing Then

MsgBox "No Detail available"

Exit Sub

End If

'This is a query, so the response detail is a ret list

Dim BuildAssemblyRetList As IBuildAssemblyRetList

Dim BuildAssemblyRet As IBuildAssemblyRet

Set BuildAssemblyRetList = response.Detail

'Potentially many transactions in the retlist: we get the first one

'for our convenience: you'll do something smarter or let the user pick

Set BuildAssemblyRet = BuildAssemblyRetList.GetAt(0)

'Save the TxnID and EditSequence: we need 'em for our mod request

Dim TransID As String

Dim EditSeq As String

TransID = BuildAssemblyRet.TxnID.getValue

EditSeq = BuildAssemblyRet.EditSequence.getValue

‘clear the message set so we can re-stuff it with the mod request

requestMsgSet.ClearRequests

' Add the request to the message set request object

Dim BuildAssmblyMod As IBuildAssemblyMod

Set BuildAssmblyMod = requestMsgSet.AppendBuildAssemblyModRq

'Set the properties in the BuildAssembly mod object

BuildAssmblyMod.TxnID.setValue (TransID)

BuildAssmblyMod.EditSequence.setValue (EditSeq)

BuildAssmblyMod.TxnDate.setValue ("2005-10-25")

BuildAssmblyMod.Memo.setValue ("Build from component list 4")

BuildAssmblyMod.QuantityToBuild.setValue (5)

' Perform the request and obtain a response from QuickBooks

Set responseMsgSet = SessionManager.DoRequests(requestMsgSet)

 MsgBox responseMsgSet.ToXMLString

' Close the session and connection with QuickBooks.

SessionManager.EndSession

SessionManager.CloseConnection

End Sub

Querying for BuildAssembly Transactions

The BuildAssemblyQuery request provides functionality similar to the functionality found

in the UI advanced Find feature, which is accessed by selecting (from the main QuickBooks

menubar) Edit->Find->Advanced Find.

If you are familiar with QuickBooks queries in general, there is nothing tricky or special

about this one. Notice however, that by default the component line items are included with

each returned build assembly transaction.

Querying for BuildAssembly Transactions 385

(c) 2013 Intuit Inc. All rights reserved.

Querying For BuildAssembly Transactions in qbXML

Listing 28-10shows a simple example of constructing a query in qbXML that queries for

BuildAssembly transactions that were builds of the specified assembly item, that were built

with the date range specified and that are currently not pending. For more information on

building queries, including using iterators to manage large query returns, see Chapter 8,

“Creating Queries.”

_____Listing 28-10 A simple BuildAssemblyQuery in qbXML

<?xml version="1.0" ?>

<?qbxml version="5.0"?>

<QBXML>

<QBXMLMsgsRq onError = "stopOnError">

<BuildAssemblyQueryRq requestID = "0">

<TxnDateRangeFilter>

<FromTxnDate>2005-10-26</FromTxnDate>

<ToTxnDate>2005-10-26</ToTxnDate>

</TxnDateRangeFilter>

<ItemFilter>

<FullName>Metal Panel Assembly</FullName>

</ItemFilter>

<PendingStatus>NotPendingOnly</PendingStatus>

</BuildAssemblyQueryRq>

</QBXMLMsgsRq>

</QBXML>

Querying For BuildAssembly Transactions in QBFC

We’ve already shown an example of constructing a BuildAssemblyQuery and processing

some of its response data in Listing 28-9.

386 Chapter 28: Using Assembly Item and BuildAssembly Functionality

(c) 2013 Intuit Inc. All rights reserved.

Calculating Sales Tax 387

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 29 1

TAXES AND DISCOUNTS (US VERSIONS) 1

This chapter presents detailed information on how QuickBooks (United States) calculates

sales tax. It also discusses how discounts (both taxable and nontaxable) are applied to sales

tax calculations.

Calculating Sales Tax

You can create a Sales Tax Group when you have one or more sales tax items to add to the

group. When a Sales Tax Group is used for a transaction, the tax percentage displayed is the

sum of all the tax percentages. However, using that group tax percentage to calculate sales

tax doesn’t necessarily reflect the correct total tax amount because of rounding that occurs

when individual taxes are calculated. The following example illustrates this point.

As an example, suppose you have a state tax of 4 percent and a county tax of 1 percent. You

create a Sales Tax Group to include both taxes. When that Sales Tax Group is used on an

invoice, it is displayed as 5 percent.

Assume an invoice’s taxable items total $38.66. If you were to use the 5 percent tax value,

you’d expect the tax to be $1.9330, which would be rounded down to $1.93. However, the

invoice will actually show $1.94, which is the correct amount. This number is correct

because the state tax of 4 percent is $1.5464, which rounds up to $1.55. The county tax of 1

percent is $0.3866, which rounds up to $0.39. Adding the two taxes together, the total tax is

$1.94, which is the amount shown on the invoice.

Consequently, if your application computes sales tax, be sure to calculate each individual

tax in a Sales Tax Group individually, then sum the individual results to obtain the correct

total.

Applying Multiple Taxes

This section discusses multiple taxes and invoices, but the discussion also applies to taxes

on sales receipts.

In general, it’s best to assign a tax item or tax group to an invoice and allow QuickBooks to

apply the same tax to all taxable items on the invoice. In some situations, however, multiple

taxes are required, so this method doesn’t work. In such cases, you’ll need to use techniques

to apply the taxes as line items, and there are several important details to be aware of.

When you are applying taxes as line items, you can use only single tax items. Tax groups

can be used only for the invoice as a whole. If you have multiple taxes that apply to all

taxable items, plus one or more other taxes that apply only to some of the items on an

invoice, it’s better to use a tax group that applies to the entire invoice for the taxes that

388 Chapter 29: Taxes and Discounts (US Versions)

(c) 2013 Intuit Inc. All rights reserved.

apply to all taxable items. You can then apply the other taxes as line items within the

invoice. Use the ItemSalesTaxRef aggregate to apply a tax or tax group to the entire

invoice.

You can use subtotals to apply a single tax line to multiple items in an invoice, but the tax is

only applied automatically for the first tax line after the subtotal line. You need to manually

supply the tax amount for any other tax lines that need to be applied to the subtotal line. If

you don’t supply an amount, the amount comes out as zero and the tax line is useless. When

you do supply an amount, the amount of tax on the subtotal also shows up in the rate

column for that tax line. There isn’t any way for the rate to show up as anything other than

the amount of the tax.

For example, in the following invoice, Tax 1 (5%) is applied automatically. The rate shows

up as 5% and the amount is calculated as $15.00. Tax 2 (6%), however, is provided by you

as an amount of $18.00 (in the third column). The Rate also shows up as $18.00, and is

filled in by QuickBooks. There is no visual representation of the rate for the second tax

(6%).

IMPORTANT

If you have a complicated tax situation where no single tax applies to

all taxable items on the invoice, you must choose a zero percent tax to

apply to the entire invoice. It is recommended that you name such a tax

item “Tax Calculated on Invoice” so that it’s clear that the tax is not

being applied by QuickBooks to the entire invoice.

Applying Discounts

Flat discounts are applied differently than percentage discounts are applied. In addition,

nontaxable discounts are applied differently than taxable discounts are applied.

Item Rate Amount

Item 1 $100.00 $100.00

Item 2 $200.00 $200.00

Subtotal $300.00

Tax 1 5% $15.00

Tax 2 $18.00
(QuickBooks

fills in this

value)

$18.00

Applying Discounts 389

(c) 2013 Intuit Inc. All rights reserved.

Flat vs. Percentage Discounts

A percentage discount applies only to the line directly above it. As a result, all of the tax

implications for a percentage discount apply only to that line. In contrast, flat discounts

apply to all lines recorded above the discount. Flat discounts are pro-rated among the items

they apply to.

In the following example, the $20.00 discount is properly distributed to be half taxable and

half nontaxable. The taxable amount for the discount is only $10.00.

The following discussion shows how QuickBooks calculates both taxable and nontaxable

flat discounts. A nontaxable discount is applied after sales tax. A taxable discount is

applied before sales tax. Both taxes are prorated among the items they apply to.

Nontaxable Flat Discount

Consider an invoice with the following items:

The sales tax (5%) in this example is calculated by QuickBooks as the sum of each

(line item * tax)

which equals a total of $315.00. The discount of $30.00 is then subtracted, which yields a

total due of $285.

NOTE

Do not use nontaxable discounts unless discounts in your
state are never applied to sales tax.

Item Amount Taxable?

Item 1 $100.00 Nontaxable

Item 2 $100.00 Taxable

Discount $20.00 Taxable

Item Amount Taxable?

Item 1 $100.00 Taxable

Item 2 $200.00 Taxable

Discount $30.00 Nontaxable

390 Chapter 29: Taxes and Discounts (US Versions)

(c) 2013 Intuit Inc. All rights reserved.

Taxable Flat Discount

A taxable discount is applied before sales tax is calculated. Using the previous example, the

tax is calculated as follows:

($100 - $10) *.05 + ($200 - $20)*.05 = $13.50 sales tax

which equals a total due of $283.50 on this invoice after discount and tax are applied.

•

What is Remote Data Sharing? 391

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 30 1

REMOTE DATA SHARING AND YOUR APPLICATION 1

This chapter describes what QuickBooks Remote Data Sharing (RDS) is, how to support it,

and how to distribute it.

What is Remote Data Sharing?

QuickBooks Remote Data Sharing is software that allows an integrated application to

communicate transparently with QuickBooks company files on another machine in a

network (typically a LAN). The communication is transparent because the application itself

is not aware that it is accessing QuickBooks remotely.

The RDS software must be distributed with your application. It consists of two

components: the RDS server and the RDS client. The RDS server must be installed on a

machine on which QuickBooks is installed. (QuickBooks need not be running, depending

on the access mode selected at the RDS server.) The RDS client must be installed on the

machine that is running your application.

Using RDS Client for Remote Access with QuickBooks Installed
Locally

Beginning with qbXML 4.0, the RDS client can be running on a machine that also has

QuickBooks installed. In this scenario, your application can access either the local

QuickBooks or the remote RDS server, depending on how you invoke the

OpenConnection2 call (available starting with qbXML 4.0).

OpenConnection2 accepts an additional parameter titled connType which has possible

value of ctUnknown, ctLocalQBD, ctRemoteQBD, or ctLocalQBDLaunchUI. If your

application is in a machine that runs RDS Client it could use ctRemoteQBD to set its

connection to RDS Client. For QuickBooks, the value would be ctLocalQBD.

RDS and Event Notification

RDS does not support event notification. That is, remote applications are not notified about

events occuring at the remote company files. For more information, please see the chapter

“Event Notification” elsewhere in this document.

392 Chapter 30: Remote Data Sharing and Your Application

(c) 2013 Intuit Inc. All rights reserved.

Compatibility with Older Versions of RDS

The SDK provides RDS installers for both the RDS 2.1 client and the RDS 3.0 client. The

3.0 client uses the new Request Processor QBXMLRP2 which supports the new

QuickBooks SDK 3.0 features. The 2.1 client is provided to support developers who

continue to use QBXMLRP.

About the RDS Server

The RDS server sits along side QuickBooks and acts as its gatekeeper. Any integrated

application on another machine (called a “remote application” in this chapter) that wants to

access QuickBooks must first pass through the RDS server.

Installation and Setup

The RDS server must be installed on the machine where QuickBooks resides. (See

“Distributing RDS” for more information on how to install the RDS server.)

After the RDS server has been installed, it must be configured via the Setup dialog. This

dialog can be displayed either automatically by the installer or manually by the user. (See

“Distributing RDS” for more information on installation options.)

The Setup dialog enables the user to establish an RDS login and password. The RDS login

and password, which are distinct from QuickBooks logins, serve to protect the user from

unknown applications gaining access to QuickBooks. Only remote applications for which

the user supplies the correct RDS login and password will have their requests forwarded on

to QuickBooks. (See “Using the RDS Client” for information on entering the RDS login

and password.)

NOTE

After setting up the initial RDS login/password pair, the user
can create additional login pairs, or make changes to existing
pairs, from the RDS server user interface.

Access Rights Within QuickBooks

The RDS server acts as a proxy for all remote applications that access QuickBooks. As a

result, the RDS server, itself, is considered an integrated application by QuickBooks. So,

the first time the RDS server is started with a particular QuickBooks company file, it must

be granted permission to access that file by the QuickBooks user.

In the process of granting the RDS server access to QuickBooks, the user also indicates

whether or not to permit access to certain personal data, such as social security numbers.

Since the RDS server acts on behalf of all remote applications, the access rights granted by

the user to the RDS server apply to all remote applications.

What is Remote Data Sharing? 393

(c) 2013 Intuit Inc. All rights reserved.

NOTE

RDS access to some of this personal data can be limited in
QuickBooks itself by unchecking the checkbox labeled “Allow
this application to access Social Security numbers and other
personal data.” Notice that this setting will apply to all
applications that access this QuickBooks company file via
RDS.

Access Modes and Company Files

The RDS server supports two access modes: one that uses the currently open company file

with QuickBooks running and one that uses one or more specified company files directly,

without QuickBooks running. You choose the access mode from the RDS server console by

clicking Change Options and then selecting the desired access mode.

In the access mode where any of the list of specified company files can be used, one or

more company files must be added to the list before remote applications can access them.

The process of adding a company file to the list requires that company file to be open in

QuickBooks and the RDS server must then be granted automatic login rights in that

company file. (The company file name must be unique in that list.) Subsequent to this

addition process, QuickBooks does not run, but remote applications use any company file

in the list directly. In this access mode, the RDS server can be set up to start automatically

whenever Windows starts.

Using the RDS Server

If the access mode in effect is the one that requires a currently open QuickBooks company

file, the user must explicitly start QuickBooks and open a company file, and then start the

RDS server, (the user must have already authorized RDS access to the currently open

QuickBooks company file) before the RDS server can begin handling requests from remote

applications.

If the access mode in effect is the one that uses company files from the specified list

without QuickBooks running, the RDS server must be running and then automatically

provides access to any of the company files upon requests from remote applications.

Once the RDS server has been successfully started, it listens at the established port for

incoming requests from remote applications until the user explicitly stops it. Notice that the

port value can be changed (by the user). However, the use of the default is recommended.

NOTE

The default port address is the port officially registered for
RDS. However, if the user must change the default port for
some reason, such as conflicts, the user can change it to any
available value.

394 Chapter 30: Remote Data Sharing and Your Application

(c) 2013 Intuit Inc. All rights reserved.

If a remote application has specified the company file name in the Request Processor’s

BeginSession method, this name must match the name of the currently running company

file, although the paths can be different, if the first access mode is in effect. If the second

access mode is in effect, the company file name specified in the Request Processor’s

BeginSession method must match the name of a company file in the RDS server’s list of

company files.

About the RDS Client

The RDS client enables the user to set attributes needed for the integrated applications on

this machine to access QuickBooks on a remote machine. Furthermore, it makes sure that

these integrated applications don’t have to change in order to access QuickBooks remotely.

Installation and Setup

The RDS client must be installed on each machine where your application is installed and

running. For SDK 3.0 and greater, the RDS client can be installed on machines that have

QuickBooks installed: for SDK 2.1, the RDS client installation continues to disallow

installation if QuickBooks is installed on the same machine. For 2.1 RDS clients, if the user

installs QuickBooks on the same machine after installing the RDS client, all integrated

applications on this machine will simply use the local copy of QuickBooks, not the one on

the remote machine.

NOTE

If QuickBooks Basic is installed, RDS will automatically be
used, not QuickBooks Basic.

If the SDK 3.0 or greater RDS client is installed on a machine with QuickBooks, and the

qbXML supported is 4.0 or greater, either the local QuickBooks can be used or RDS,

depending on the connType parameter supplied in the call to OpenConnection2. (See

“Using RDS Client for Remote Access with QuickBooks Installed Locally” (page 391) for

more information.) If qbXML 4.0 and greater is not supported, the local QuickBooks will

automatically be used.

After the RDS client is installed, it must be configured via the Setup dialog. This dialog

can be displayed either automatically by the installer or manually by the user. (See

“Distributing RDS” for more information on installation options.)

The Setup dialog enables the user to supply the network machine name and port of the

machine where QuickBooks and the RDS server are running. If the RDS server is started,

the user can try to retrieve this information by using the built-in server discovery

mechanism. Or, this information can also be found on the RDS server’s main window.

Distributing RDS 395

(c) 2013 Intuit Inc. All rights reserved.

NOTE

The server port field contains a default value matching the
default value in the RDS server installation. The user can
change this, but shouldn’t unless required to by conflicts or
other such considerations.

Using the RDS Client

Before the RDS client can be used by your application to send remote requests to

QuickBooks, the user must start the RDS server on the host machine. In addition, if the

access mode selected at the RDS server is for the “currently open company file” then the

user must also start QuickBooks and open the company file.

Unlike the RDS server, however, the RDS client does not have to be started explicitly by

the user. Instead, once the Setup dialog has been completed, the user simply runs your

application. Then, when your application makes its initial call to QuickBooks, the user will

be prompted to enter the RDS login and password.

If the user chooses to always allow access, then no further interaction with the RDS client is

required. The exception to this is if the user changes any relevant information, such as the

password. In a case like this, the user would have to enter the new information the next

time your application calls QuickBooks, or before.

On the other hand, if the user chooses to allow access this time only, then a prompt to enter

the RDS login and password will be displayed each time your application is run and it calls

QuickBooks for the first time.

Although it’s normally not the case, there are a few situations in which the user would want

to explicitly run the RDS client, including:

• Changing the login and/or password to match a change on the RDS server.

• Changing the server name and/or port to reflect a change on the RDS server or a change

of the server machine, itself.

• Changing the access level of a particular application (for example, from always allow

access to prompt each time).

Distributing RDS

The material on how to distribute your application is divided into two main sections:

• Background information on the SDK installers and merge modules, including legal

requirements you must be aware of.

• Recommended and required features of your own implementation.

Please read both of these sections carefully before implementing your installation.

396 Chapter 30: Remote Data Sharing and Your Application

(c) 2013 Intuit Inc. All rights reserved.

How to Use the SDK Installers and Merge Modules

There are only two supported ways in which you can redistribute RDS components:

1. You can use the RDS standalone compressed-image installers that we provide.

2. You can use the RDS merge modules that we provide.

NOTE

You can mix these methods if you want; for example, you can
use the supplied RDS standalone installer for the server and
the supplied merge module for the client, or vice versa.

IMPORTANT

It is a violation of your qbXML license agreement to
redistribute RDS without using either our standalone installers
or our merge modules.

Automatic installation programs and packaging wizards, such as the wizard in Microsoft®

Visual Studio®, will not do the right thing (even if you are using .NET). They will

redistribute the qbxmlrp.dll file, which is against your license agreement and could also

cause significant problems for your users.

Using the Standalone Installers

If your install process does not support merge modules, you will need to use the standalone

installers provided with the SDK. These installers will automatically do the right thing.

Using the Merge Modules

IMPORTANT

Make sure you have the Microsoft VC (VC_CRT.msm), VC++
(VC_STL.msm), and VC I/O (VC_CRT_IO.msm) runtime
library merge modules, which are required because the SDK
merge modules install components that depend on the Visual
C and C++ version 7 runtime libraries. These Microsoft merge
modules are included with most MSI-based install builders, or
you can get them directly from Microsoft. When you add the
VC_CRT.msm, VC_STL.msm, and VC_CRT_IO.msm modules
to the installer you are responsible for configuring them to set
their target directory to the Windows system directory.

If your install process supports Microsoft merge modules, you can use the merge modules

that are provided with SDK.

Distributing RDS 397

(c) 2013 Intuit Inc. All rights reserved.

What Is a Merge Module?

The Microsoft Installer (MSI) service is built into Windows 2000 and XP. MSI solves a

number of installation problems, such as getting clean uninstalls and protecting system

components, and includes redistributable install engines that support Win98, WinNT, and

Win ME. To get a “Designed for Windows” logo, your application must be installed using

MSI.

Merge modules are a key part of MSI. They encode the logic and files needed to correctly

redistribute shared components, which aren’t removed from a system until all of the

applications that installed them are removed.

Any installation that is built for an MSI-engine installer can use merge modules. Many

proprietary install tools that are not strictly based on MSI (for example, newer versions of

InstallShield Professional) can also take advantage of merge modules.

How Do I Use a Merge Module from the SDK?

The SDK merge modules are located in the ../tools/MergeModules folder. Here’s how to

use them:

1. Set your installation development tool to include the SDK’s MergeModules directory in

the MergeModule search path.

2. Each MSI “feature” refers to components and/or merge modules. For any feature that

installs components of your application that depend on the SDK capabilities provided

by a merge module, specify that particular merge module as part of that feature.

If a merge module is dependent on some other module, the other module will be added

to your installer automatically.

3. Build your installation as usual. All the logic from the included merge modules will be

merged into your install.

What Installation Logic Is Built into the Provided Merge Modules?

The RDS merge modules do five things:

1. They provide the appropriate DLL files and executable files for the RDS Server or

Client (as two separate merge modules) and register them appropriately.

2. They install a link to their configuration utility on the desktop and in the QuickBooks

area of the Windows Start menu.

3. They check whether QuickBooks is installed.

> If the RDS Server is being installed, a version of QuickBooks that supports the

SDK must already be installed.

> If the 2.1 RDS Client is being installed, QuickBooks must not be installed: for 3.0

RDS clients, the installation is performed whether QuickBooks is installed or not.

4. They verify that their counterpart (RDS Server or RDS Client) is not installed. (If it

were possible to install both the RDS Server and Client, the user could create an infinite

data-sharing loop that would never leave the system.)

5. The RDS merge modules contain a custom action to invoke the appropriate

configuration UI for the RDS Server or Client but DO NOT add that custom action to

the install sequence itself. If you create your own MSI installer that uses an RDS merge

398 Chapter 30: Remote Data Sharing and Your Application

(c) 2013 Intuit Inc. All rights reserved.

module, you may want may to add the configuration custom action to the install

sequence or to invoke the action as the result of a button push in the install wizard. For

example, the QBSDK installer invokes the appropriate configuration UI via a

“DoAction” event when the “Finish” button is pressed if the “Configure RDS”

checkbox on the final dialog is checked.

Choices in Implementing Your Installer

You can use either the simple method, which is to use the standalone installers supplied

with the QuickBooks SDK, or you can use the more flexible merge modules, which are also

supplied with the SDK.

Simplest Method: Using the Standalone RDS Installers

The simplest way to install RDS for users is for your installer to invoke the RDS client

installer from your own application installer because the RDS client is installed on the same

system as your application. Also, you should provide the RDS server installer on your own

distribution CD with instructions for running the RDS server install on a machine running

QuickBooks.

More Flexibility: Using the RDS Merge Modules

If you require more flexibility than using the prebuilt standalone installers, and you are

using a modern install tool such as InstallShield Express, InstallShield Developer, Wise

Installer, and so on, you can use the RDS MSI merge modules provided in the SDK. Unlike

many merge modules which simply install and register COM servers, the RDS merge

modules offer considerably more pre-built capabilities as described in the following

subsection.

All of the merge module behavior described is mirrored in the standalone installers.

Furthermore, the .msi database for each standalone installer can be extracted from the

RDSClient.exe or RDSServer.exe files and the tables can be examined to see precisely how

the capabilities of the merge module are leveraged by the standalone installers.

Verifying Presence/Absence of QuickBooks

For the RDS server install, the merge modules verify whether QuickBooks is already

installed on the system. For the 3.0 client, there is no check for QuickBooks, as the

installation succeeds whether QuickBooks is installed or not. For the 2.1 RDS client install

there is a check to determine whether QuickBooks is already installed on the system:

installation of the 2.1 client is not allowed if QuickBooks is installed. This is a mandatory

step that the merge module forces into the install sequence. If the client and/or server merge

module is included in an installer, then the QuickBooks verification custom action will set

the property “QuickBooksInstalled” to 1 if QuickBooks is installed, otherwise it will either

not be present at all or will not be set to 1.

Supporting RDS 399

(c) 2013 Intuit Inc. All rights reserved.

Accordingly, an installer using either (or both) RDS merge module can determine whether

QuickBooks is installed by checking the condition “QuickBooksInstalled=1” (to verify

QuickBooks is there) or “NOT QuickBooksInstalled=1” (to verify QuickBooks is NOT

there.

Informing Users of Error Conditions via Error Dialogs

The merge modules include dialogs explaining why the client or server cannot be installed

because QuickBooks is (not) already installed. These are named

“ClientQuickBooksInstalled” and “ServerQuickBooksNotInstalled,” respectively.

These dialogs should be inserted into the install UI sequence so that they appear either just

before the main wizard sequence begins or just after. The “Next” button performs an

EndDialog action with the return argument allowing the sequence to proceed normally,

while the “Cancel” button performs an EndDialog action with the exit argument that

reflects the user’s desire to quit the installation at that point.

Using Custom Actions to Invoke Setup Dialogs

The merge modules provide custom actions to invoke the client or server initialization/

setup dialogs. These are called “ClientInitialize” and “ServerInitialize,” respectively. The

intent here is for the “Finish” button on the last dialog of an install wizard sequence to

include a “DoAction” event that conditionally (see “Verifying Presence/Absence of

QuickBooks” above) invokes the appropriate custom action.

Supporting RDS

In order to support RDS, you need to distribute it with your application, inform your

customers about it, and be aware of certain new messages that appear with the use of RDS

for existing QuickBooks HRESULTs.

What Your Application Must Do to Use RDS

Applications need not be aware that they are using QuickBooks locally or remotely.

Accordingly, you are not required to code your applications differently to use RDS.

However, if you want your application to support a user’s choice of either accessing

QuickBooks remotely (via the RDS server) or the local QuickBooks on the same machine,

you can check for the user’s choice and invoke OpenConnection2 accordingly, as described

under “Using RDS Client for Remote Access with QuickBooks Installed Locally” (page

391). Of course, using OpenConnection2 is only possible with QuickBooks 2005 and

greater versions.

You must be aware that RDS is not made available directly to users. Instead, you must

include the RDS software with your own application when you distribute it. Pre-built

installation merge modules and standalone installers are included with the QuickBooks

SDK for this purpose.

400 Chapter 30: Remote Data Sharing and Your Application

(c) 2013 Intuit Inc. All rights reserved.

For more information on how to use the merge modules and installers, see “Distributing

RDS.”

NOTE

Although no HRESULTs values have changed with the use of
RDS, some of the HRESULTs may be slightly different when
RDS is used. See “RDS-Specific HRESULTs Messages” in this
chapter.

Which Versions of QuickBooks Support RDS?

Any version of QuickBooks that supports the QuickBooks SDK will also support RDS.

What You Need to Tell Your Customers about RDS

You should be aware that although your customers know about your application, they may

not know about RDS. You may want to include mention of RDS and its behaviors in your

documentation and online help. Otherwise, they may be confused when they see the RDS

dialogs during the installation and use of your products.

In particular, you should be careful to warn them about the access granted to the RDS

server and that it grants to all RDS clients the same QuickBooks access as that possessed by

the logged in QuickBooks server, potentially to sensitive data such as payroll or other

personal data.

RDS-Specific HRESULTs Messages

The following table lists the existing HRESULTs that have new messages if the error occurs

when RDS is being used. The table shows the existing HRESULT and the new messages

for RDS.

HRESULTs New RDS-Specific Messages

0x80040402 Remote QuickBooks access failed unexpectedly.

0x80040407 Error retrieving the QuickBooks remote server name and port.

0x8004040D Remote QuickBooks access failed because the remote server name and/or port have
changed.

0x80040414 A modal dialog box is showing in the QuickBooks Remote Data Sharing Client user
interface. The application cannot access QuickBooks until the dialog is dismissed.

0x8004041A Remote QuickBooks access failed because login and/or password do not match those
on the server.

0x8004041D The RDS server was not enabled to allow remote access for the requested company
file.

Supporting RDS 401

(c) 2013 Intuit Inc. All rights reserved.

0x80040420 The user has denied remote access to QuickBooks.

0x80040421 Unable to establish a remote connection to QuickBooks.

HRESULTs New RDS-Specific Messages

402 Chapter 30: Remote Data Sharing and Your Application

(c) 2013 Intuit Inc. All rights reserved.

The General Error Recovery Mechanism 403

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 31 1

Error Recovery 1

This chapter provides details on the general error recovery mechanism provided by the QB

SDK. The easiest recovery method is available via QBFC, if you are using that. QBFC

automates most of what you need to do. However, in this chapter we’ll cover both QBFC

and qbXML methods.

The General Error Recovery Mechanism

If your application adds, deletes, voids, or modifies data in the QuickBooks company file,

you need to implement an error recovery routine. This routine enables your application to

respond to and recover from conditions that interrupt normal processing of requests and

responses. Examples of such error conditions include system crashes and power outages as

well as internal system errors and out-of-memory conditions.

A simple error recovery routine asks QuickBooks to save its state, so that when a

processing error occurs, you can ask QuickBooks to check its state and it can return status

information to you about the request in question. For example, suppose your application

sends a CheckAdd request to QuickBooks. The ProcessRequest method (or DoRequests

method for QBFC) fails to return a response or result code. What should your application

do? Does it assume the check was created? Does it assume the check wasn’t created? Either

assumption, if incorrect, will cause problems. The correct approach is for your application

to invoke an error recovery routine that checks the status of the CheckAdd request and

determines whether processing succeeded or failed before it asks QuickBooks to add the

check a second time.

If your application is a read-only application (that is, the only requests it sends are query

requests), then you do not need to implement an error recovery routine.

When to Invoke Error Recovery

When you receive an error from QuickBooks that indicates an error in processing a request,

or when you do not receive a response from QuickBooks at all, your application needs to

invoke its error recovery routine. In addition, if your application adds, deletes, modifies, or

voids data in the QuickBooks company file, it should invoke its error recovery routine upon

startup, in case the previous session terminated before all outstanding requests were

successfully processed.

HRESULTs Returned by QuickBooks

Applications integrating with QuickBooks should invoke their error recovery routine when

any of the following error conditions occurs:

404 Chapter 31: Error Recovery

(c) 2013 Intuit Inc. All rights reserved.

• Your application did not receive a response from QuickBooks.

• Your application received one of the following HRESULTS:

> 0x80040402 (Unexpected error. Check the qbsdklog.txt file for possible,

additional information.)

> 0x8004040E (There is not enough memory to complete the request.)

> 0x8004041C (An internal QuickBooks error occurred while trying to access the

company data file.)

• Your application received a response, but it did not include the qbXML response text

stream that was expected.

Automated Error Recovery in QBFC

QBFC automates the SDK error-recovery mechanism described later in this chapter (see

“Using Error Recovery in qbXML-based Applications”) by automatically managing the

new MessageSetID and oldMessageSetID attributes and by saving the request message set

to disk. This enables your application to determine which request corresponds to the

response status that the error-recovery feature returns.

For QuickBooks, QBFC error-recovery information is unique to a given integrated

application (via a GUID specified by ErrorRecoveryID) and company file. As a result, a

session must be started before certain QBFC error-recovery functions can be executed.

(Only EnableErrorRecovery, ErrorRecoveryID, and SaveAllMsgSetRequestInfo can be

executed before a session is started.)

NOTE

QBFC automated error recovery is available only for data
message sets (not for subscription and event messages).

Implementing Automated Error Recovery

In general, these are the steps you need to follow to use QBFC’s automated error recovery

in your application:

1. Set the error recovery ID, using the ErrorRecoveryID function.

2. Set EnableErrorRecovery to true to enable error recovery.

3. Set SaveAllMsgSetRequestInfo to true so the entire contents of the MsgSetRequest

will be saved to disk. If Save All MsgSetRequestInfo is false (the default), only the

NewMessageSetID will be saved.

4. Use IsErrorRecoveryInfo to check whether an unprocessed response exists. If

IsErrorRecoveryInfo is true:

a. Get the response status, using GetErrorRecoveryStatus.

b. Get the saved request, using GetSavedMsgSetRequest.

c. Process the response, possibly using the saved request.

d. Clear the response status, using ClearErrorRecovery.

Using Error Recovery in qbXML-based Applications 405

(c) 2013 Intuit Inc. All rights reserved.

5. Send the current request set.

6. Process the response from the current request.

7. Clear the response status, using ClearErrorRecovery.

Error Recovery and Query Requests

Generally, error recovery is not used with query requests. If your application does not

receive a response from a query request, you would usually just resubmit the query. We

recommend that your application disable error recovery before querying, and then re-enable

it before starting other requests.

Using Error Recovery in qbXML-based Applications

If your application doesn’t use QBFC, you’ll have to do more work in implementing error

recovery. You’ll need to know a few things that are simply done automatically and behind

the scenes for QBFC.

Error Recovery Using Old and New Message IDs

The QuickBooks SDK error recovery mechanism employs two attributes:

newMessageSetID and oldMessageSetID. Message set IDs need to be unique strings and are

limited to 23 characters. (The colon, backward slash, and forward slash cannot be used in

these IDs.) The newMessageSetID identifies the current message and enables the error

recovery mechanism by signaling to QuickBooks that you want it to save the state of this

message.

When you are sure QuickBooks has successfully processed a given message set, you send

the message ID as the oldMessageSetID attribute, which has the effect of asking

QuickBooks to clear that ID and associated data from its saved state.

Your application is responsible for generating the message set IDs, which must be unique

within your application space. How you generate the value for the message ID is

application-specific. For instance, you might use a language-dependent tool to generate the

value. (The tool should ensure a unique value, not just a randomly generated one.)

How to Clear All Error Recovery Information

In some circumstances, you may need to delete all error recovery information that applies

to your applications. To do this, simply set the oldMessageSetID value to

ClearAllMessageSets. (oldMessageSetID = ClearAllMessageSets).

Steps for Using Error Recovery in qbXML-based Applications

The following steps outline a general procedure for implementing error recovery within

your application. First, steps 1 through 6 describe what your application needs to do during

normal, successful processing of a request.

406 Chapter 31: Error Recovery

(c) 2013 Intuit Inc. All rights reserved.

1. Create a unique newMessageSetID.

2. Create the request message set, including the newMessageSetID attribute, and save the

request message set in some persistent form. (Be sure to encrypt company file data or

otherwise ensure that it is secure and not accessible from the file system.)

3. Send the request message set.

4. Receive the response and process it.

5. If the response is successfully processed, delete the persistent copy of the request

message set.

6. Clear the oldMessageSetID (this is the “newMessageSetID” you used in Step 2).

If a crash or other processing error occurs, you will need to invoke your error recovery

routine. Here are the general steps:

1. At startup, check for a saved request message set. (If the request message set is still

save on disk—step 2, above—it was never cleared. This condition indicates some

problem with normal processing outlined in steps 1 through 6.)

If a saved request message set is present, resend the request set. This action has the

effect of performing a status check for the message set. (See Table 31-2.) If

QuickBooks has already processed all or some of the request, it will return the status

for it. If QuickBooks has not already processed the request, it will process it and send a

response.

2. Based on the response from QuickBooks, you will need to fix the problem, if there is

one. (If you just keep sending the same request without fixing problems, you’ll be in an

endless loop.) After you’ve fixed or identified the problem, you need to generate a new

newMessageSetID.

3. Repeat steps 2 through 6, (sending the revised request with its new newMessageSetID

to QuickBooks).

Example

Listing 31-1 shows an example of a CheckAdd request that includes a newMessageSetID.

If an error in processing occurred and no response was received, the error recovery routine

could send this same request again. If the request had been previously received,

QuickBooks would interpret this second, identical request as a status check and would send

back the response shown in Listing 31-2.

Using Error Recovery in qbXML-based Applications 407

(c) 2013 Intuit Inc. All rights reserved.

______Listing 31-1 CheckAdd request with error recovery (newMessageSetID)

<QBXMLMsgsRq newMessageSetID = "DE9437D9-AA85-21E4-D643"

onError="continueOnError">

<CheckAddRq requestID = "1">

<CheckAdd>

<AccountRef>

<FullName>Checking</FullName>

</AccountRef>

<PayeeEntityRef>

<FullName>East Bayshore Auto Mall</FullName>

</PayeeEntityRef>

<TxnDate>2001-10-14</TxnDate>

<Memo>Installment check</Memo>

<ExpenseLineAdd>

<AccountRef>

<FullName>Automobile</FullName>

</AccountRef>

<Amount>520.00</Amount>

</ExpenseLineAdd>

</CheckAdd>

</CheckAddRq>

</QBXMLMsgsRq>

______Listing 31-2 Response to status check for CheckAdd request with error recovery (newMessageSetID)

<?xml version="1.0" ?>

<QBXML>

<QBXMLMsgsRs newMessageSetID="DE9437D9-AA85-21E4-D643"

messageSetStatusCode="0">

<CheckAddRs requestID="1" statusCode="0" statusSeverity="Info"

statusMessage="Status OK"/>

</QBXMLMsgsRs

</QBXML>

Message Set Status Code

A messageSetStatusCode is returned to your application in response to an error

recovery request, such as a status check or a clear status. It is also returned if some specific

error recovery operation is invoked and fails, such as a standard check for a valid message

set ID; if the call fails, then a messageSetStatusCode is returned.

A messageSetStatusCode is not returned, for instance, if your application issues a

check status request that returns successfully. It is good practice to test for this status code,

regardless of the fact that in some cases it is not returned.

408 Chapter 31: Error Recovery

(c) 2013 Intuit Inc. All rights reserved.

Table 31-1 shows the error recovery status codes and their meaning.

Request ID

If you include a request ID in a request message, that ID will be returned in a status check

request. This is a handy way to identify a request that was sent earlier. (See Listing 31-1

and Listing 31-2.)

Comparing Requests (Performing a Checksum)

In certain cases when you send multiple requests with the same newMessageSetID,

QuickBooks compares the two versions of the messages themselves by performing a

checksum on them. If the messages do not match, QuickBooks returns an error (9001)

because, even though the newMessageSetIDs were the same, the messages were different,

so your intent is not clear. (If the messages match, then QuickBooks assumes you’re

performing a status check.)

Status for Individual Requests within a Message Set

When a message set contains multiple requests, some of the requests may have been

processed successfully before the error condition occurred. When error recovery is

implemented (through use of newMessageSetID), applications integrating with QuickBooks

receive individual status codes for each request within the message set, as shown in Listing

31-3.

Table 31-1 Error recovery status codes returned in messageSetStatusCode

Code Meaning

0 Success

600 The oldMessageSetID does not match any stored IDs, and no
newMessageSetID is provided.

9001 Invalid checksum. The newMessageSetID specified matches
the
currently stored ID, but the checksum fails.

9002 No stored response was found.

9003 (Not used)

9004 Invalid MessageSetID (message set ID), greater than 24
characters was given.

9005 Unable to store response.

Using Error Recovery in qbXML-based Applications 409

(c) 2013 Intuit Inc. All rights reserved.

______Listing 31-3 Content of error recovery processing record returned by a status check

<QBXML>

<QBXMLMsgsRs newMessageSetID="DE9437D9-AA85-21E4=D643"

messageSetStatusCode="0">

<CheckAddRs requestID="345" statusCode="510"

statusSeverity="Warning"

statusMessage="Unable to return all data" />

<AccountAddRs requestID = ”346” statusCode = "0"

statusSeverity = "Info"

statusMessage = "Status OK" />

<CustomerModRs requestID = ”347” statusCode = "0"

statusSeverity = "Info"

statusMessage = "Status OK" />

<CheckAddRs requestID="348" statusCode="3231"

statusSeverity="error"

statusMessage="This request has not been processed" />

</QBXMLMsgsRs>

</QBXML>

Listing 31-3 contains the following status information:

• The messageSetStatusCode is 0, indicating that the status check for the request

message set was successful.

• The response message set contains four response messages.

> CheckAddRs returned with a warning status (510).

> AccountAddRs completed successfully with a status code of 0 (success).

> CustomerModRs also completed with a status code of 0 (success).

> An error condition occurred while the last message in the request message set was

being processed. Thus, the final CheckAddRs request was not processed.

QuickBooks returned a status code of 3231 (with a status severity of Error). The

associated message text explains that the request was not processed, so you know

you would need to resend that request only.

Clearing State (oldMessageSetID)

Once you know that a particular request has been processed successfully, you’ll want to

delete your saved copy of the request and send a message to QuickBooks to clear the old

message set ID and associated status information that has been stored. Listing 31-4 shows

one way to clear the oldMessageSetID and status information.

______Listing 31-4 Clearing the oldMessageSetID

<QBXML>

<QBXMLMsgsRq oldMessageSetID = "DE9437D9-AA85-21E4-D643"

onError = "continueOnError"/>

</QBXML>

410 Chapter 31: Error Recovery

(c) 2013 Intuit Inc. All rights reserved.

Table 31-2 Summary: Use of New and Old Message Set IDs

Maintaining State within Your Application

What constitutes an application’s internal state in regard to error recovery will vary from

one application to another based on how the application uses and stores request and

response data. For instance, many applications maintain temporarily the following

information:

• A message ID of the most recent request message set sent

• Contents of the most recent message request

• The most recently received response

Although QuickBooks allocates the memory for the response object on behalf of the

application, the application processes the content and then uses it according to its

implementation and features. It may discard the response, it may preserve it in a

database, it may display it to the user in some form. In any case, it is the application’s

responsibility to release the memory used for the response data.

If your request includes . . . QuickBooks does this
messageSetStatusCode
returned . . .

A brand new
newMessageSetID.

Executes the request and
stores state for this message
ID

status=0.

A newMessageSetID that has
already been sent in a previous
message.

Status check. (Also does
checksum on the two
messages that use the same
newMessageSetID.)

If checksum is OK, returns
status=0.

If checksum fails, returns
status=9001.

oldMessageSetID =
newMessageSetID

(Both are included in same
request; ID has already been
sent in a previous message.)

Status check. status=0
(If ID can’t be found,
returns status 9002).

Only an oldMessageSetID. Clears state for this message
ID.

status=0
(If old ID can’t be found,
returns status=600;).

oldMessageSetID =

ClearAllMessageSets

If you receive status code
9005, issue this request, which
deletes all recovery records for
this application.

status=0 if the records are
deleted. (If no records
exist to be deleted or an
error occurs during
deletion, returns
status=600.)

oldMessageSetID = XXX

newMessageSetID = YYY

(oldMessageSetID was sent
previously and newMessageSetID
is new.)

Clears state for the
oldMessageSetID.
Executes the request.
Stores state for the
newMessageSetID

status=0;

Using Error Recovery in qbXML-based Applications 411

(c) 2013 Intuit Inc. All rights reserved.

The only hard and fast guideline is that you should not clear state too early in your process.

Be certain that your application is finished with the request to which the internal state to be

cleared pertains. Here are more extensive ideas:

• An application should preserve the newMessageSetID of a request message set until it

has received a response from QuickBooks and processed the results of that response.

Even though an error condition might not have occurred, for other reasons you might

deem it useful for your application to check status in a request message set. In this case,

you might want the application to avoid disposing of the message ID until just before it

exits its error recovery routine.

• Recall that whenever a ProcessRequest (or DoRequests or Post) call is made to

QuickBooks, it is subject to the possibility of an interruptive error condition. For this

reason, some applications might consider preserving the message ID until after the

clear state request returns successfully. An application not deleting the message ID until

after clearing the processing state in QuickBooks would need to be careful not to

misinterpret the message ID. That is, it must not mistakenly handle that message ID as

if it were meaningful in any other context before actually deleting it.

• After sending a processing request, your application should always check returned

status. If the returned status indicates problems, an application might call its handler

routine for the condition.

If the ProcessRequest call completed successfully, an application should process the

returned response, handling all status codes and data.

Clearing Error Recovery Records Maintained by QuickBooks

QuickBooks maintains a finite number of error recovery processing records for your

application in association with the company file that your application is modifying. If an

error condition occurs that interrupts processing, your application can retrieve this stored

information because it is associated with the message ID you specified along with the

request message set to be processed.

The best practice to follow is to always clear error recovery processing state information

from QuickBooks when your application is entirely finished with the response to the

request.

For all requests except the one during which the error condition occurred, an application

should already have complete information on the processing state of the request. The

application might either have received that information in a normal response from

QuickBooks or it might have sent QuickBooks a check status request to obtain the

information. Thus, the information stored in QuickBooks for these requests is no longer

needed for error recovery.

If your application does not regularly clear the processing state for requests maintained by

QuickBooks, QuickBooks will eventually delete older records to allow for addition of new

ones. Just as an operating system must clear memory from time to time to free up system

resources, QuickBooks must ensure that resources are available for addition of new error

recovery processing state records to accommodate new requests.

412 Chapter 31: Error Recovery

(c) 2013 Intuit Inc. All rights reserved.

Understanding QBFC Objects 413

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 32 1

HOW TO USE THE QBFC CONVENIENCE LIBRARY 1

If you are comfortable using XML simply using the qbXML requests may be the way for

you to implement your application. However, for many programmers, QBFC provides a

faster and easier way to write an application.

This chapter describes the QBFC objects and methods you need to use to create and send

requests to QuickBooks and to process the data returned. It points you to the OSR for the

details you need and also mentions how to use the OSR to look up this information.

Although the important objects and methods not covered in the OSR are described in this

chapter, you’ll notice that this chapter does not list every possible object, property, and

method. There are a couple of reasons for this approach:

• First, there is really no need to do this: the objects and methods are available in the type

library and can be seen via an object browser (such as Microsoft’s OLEView included

with Visual Studio).

• Second, much of the information is redundant: most of what you need to know is

already documented in the OSR or in the relevant chapters in this programming guide.

• Third, such an approach is confusing, due to the plethora of objects in QBFC.

Understanding QBFC Objects

If you try to understand the QBFC object model from the lengthy list of available objects,

you’re in for a long day’s work. The QBFC library is a thin wrapper, which means there are

a great many objects to wade through if you are just looking at objects.

Objects, Objects Everywhere: Where Do I Start?

The best way to understand the QBFC objects is to consider the way in which the objects

are used, starting with the central QBFC object: QBSessionManager. This object is used for

all communication with QuickBooks, including:

• Making the initial QuickBooks connection

• Beginning the QuickBooks session,

• Creating requests

• Sending the requests to QuickBooks

• Returning responses from QuickBooks.

In this chapter, we are concerned mainly with the QBSessionManager’s role in creating and

sending requests and returning responses because most of the QBFC objects and data

processing via those objects are exercised during these activities.

414 Chapter 32: How to Use the QBFC Convenience Library

(c) 2013 Intuit Inc. All rights reserved.

NOTE

For more information on QBSessionManager, see Chapter 3,
“The Communication Model and Ways of Implementing It.”

Which Objects Do I Need to Create a Request?

As shown in Figure 32-1 on page 414, you use the QBSessionManager’s

CreateMsgSetRequest method to create an IMsgSetRequest object that will contain one or

more requests that you want to send to QuickBooks. You add an empty request object to

that IMsgSetRequest object via an Append method. As indicated in the figure,

IMsgSetRequest has one Append method for each SDK request. (The OSR for QBFC lists

all of the SDK requests, if you don’t have an object browser handy.)

IMPORTANT

Only invoke an Append method once for each desired request!
Each time you invoke an Append method, you are adding a
new and separate request object to the request set.

Figure 32-1 Objects used to build requests

In Figure 32-1 on page 414, notice that when you invoke an Append method, it returns you

an empty object that you subsequently need to fully construct prior to sending the message

set to QuickBooks. For example, AppendCustomerAddRq returns the ICustomerAdd

object. Once you have this object, you can go to work constructing your request by filling

in the properties for this object.

Notice that the various Append methods are not listed in the OSR. If your programming

environment supports Intellisense, you can see all of the Append methods in your code

editor when you instantiate an IMsgSetRequest object. If you don’t have this, and don’t

Which Objects Do I Need to Create a Request? 415

(c) 2013 Intuit Inc. All rights reserved.

have an object browser that can look into the QBFC library, you can easily construct the

Append method name simply by looking at the request names listed in the OSR: just put

“Append” in front of each request name and “Rq” at the end of the request name.

NOTE

For each request in the OSR, the OSR provides code samples
that show the construction in VB or VB.Net code. Simply click
on the VB6 Code or VB.NET Code tabs in the OSR.

How Do I Use the OSR to Fully Construct the Request?

You need to use the OSR to program in QBFC, both to get an idea of what properties are

required/available for a given request or response object, and for documentation of those

properties. Figure 32-2 on page 415shows the OSR listing for the CustomerAdd request.

Figure 32-2 OSR listing for CustomerAdd request

Notice the name directly under the Tag heading, circled in this figure, ICustomerAdd. This

is the name of the QBFC object for the request or response, depending on whether the OSR

is showing requests or responses.

In your code, you need to create an object of this type by invoking the corresponding

Append method that returns it, and then fill its fields as you want, using the field names

listed under that object in the OSR. For example, for a new customer, you would set the

first name field like this if you were coding in Visual Basic:

416 Chapter 32: How to Use the QBFC Convenience Library

(c) 2013 Intuit Inc. All rights reserved.

Dim MyICustomerAdd as ICustomerAdd

Set MyICustomerAdd = MyRequestMsgSet.AppendCustomerAddRq

MyICustomerAdd.FirstName.SetValue("Fred")

The OSR Has Everything You Need to Set Request Values

The OSR contains all the information you need to set request object values, including any

available enumerated values. Figure 32-3 on page 416 shows the delivery method field for a

customer, which is an enumerated value. To see the available values, click on the field type

to the left of the field name. In our example, this would be

IQBENDeliveryMethodType

Clicking on the type displays the enumerated values, as in the circled area in the figure

where the values displayed are dmEmail, dmFax, dmPrint.

Figure 32-3 Looking up enumerated values in the OSR

Which Objects Do I Need to Create a Request? 417

(c) 2013 Intuit Inc. All rights reserved.

Other Useful IMsgSetRequest Methods

The IMsgSetRequest Append methods are already covered in this document and in the

OSR. However, the request message set object has other methods you need to know about.

IMsgSetRequest
Method/Property Parameters Description

HRESULT Attributes
([out, retval]
IAttributesRqSet**pVal);

-pVal

Pointer to the returned
IAttributeRqSet object

This property returns the IAttributeRqSet object,
which you would need if you wanted to determine
the current attribute settings in the request set.

IAttributeRqSet contains the attributes that are
currently in effect for all requests in the message
set.

QuickBooks supports several attributes, which are
documented in the OSR under the Attributes link
in the main OSR page.

HRESULT
ClearRequests();

NA Removes all requests currently appended to the
request message set.

HRESULT RequestList
([out, retval]
IRequestList* *pVal);

pVal

Pointer to the returned
IRequestList object

You probably will seldom use this property. You
would use this property if you wanted to get one
or more requests from the request message set.
The IRequestList object returned has a count and
a GetAt method for returning individual IRequest
objects from the list.

Once you have the IRequest object, you can use
its RequestID, Type, or Detail methods as desired.
The Detail is processed exactly like its IResponse
counterpart, which is thoroughly covered in
Chapter 7, “Handling Responses Using QBFC or
qbXML.”

HRESULT
ToXMLString([out, retval]
BSTR* qbXMLRequest);

-qbXMLRequest

Pointer to the returned
string containing the
request message set in
qbXML format.

This method is very handy during diagnostics
where you need to examine the complete XML
representation of the requests that were built in
QBFC. Useful for making sure you are getting the
requests you expect.

HRESULT Verify([out]
BSTR* errorMsg,
[out, retval]
VARIANT_BOOL* isOK)

errorMsg

Contains an error message
for every request that
failed validation. If there is
no failure, this string is
empty.

isOk

Returns True in VB and
Variant_True in C++ if all
the requests are valid.
Returns False in VB and
Variant_False in C++
otherwise.

The DoRequests method causes validation to be
run automatically. However, if you need to validate
the requests for proper construction before you
invoke DoRequests, you can use this method.

418 Chapter 32: How to Use the QBFC Convenience Library

(c) 2013 Intuit Inc. All rights reserved.

Which Objects Do I Need to Process a Response?

As shown in Figure 32-4 on page 418, you use the QBSessionManager’s DoRequests

method to send a request message set to QuickBooks. The input to this method is the

IMsgSetRequest described earlier in this chapter. The return from this method is an

IMsgSetResponse object.

The IMsgSetResponse has a property called ResponseList that returns the IResponseList

object containing all of the responses to the requests that were made in the IMsgSetRequest.

If all of the requests were successful, the number of responses will match the number of

requests in the corresponding IMsgSetRequest, but this won’t always be the case, due to the

possible request errors.

Notice that the DoRequest method returns successfully without errors even if any or all of

the requests fail. You can’t use the method return to get information on whether requests

were successful. To do this, you need to process the individual request objects (IResponse)

contained in the ResponseList. Once you have the individual IResponse, you can query it

for the StatusCode and StatusMessage you need to determine success or failure and get

some idea of the nature of the failure.

We’ll describe the IResponse methods later. But in the figure, notice the methods that are

listed, such as Detail, StatusCode, and Type. You will use those every time your process a

Response: you need to check the StatusCode for success, then you need to check the Type.

You need the type because this determines what kind of object you need to use to receive

the response Detail, and, in some languages, make an upcast to that type.

Figure 32-4 Objects used to process data from a response

Which Objects Do I Need to Process a Response? 419

(c) 2013 Intuit Inc. All rights reserved.

As shown in the figure, the response Detail differs for queries. For non-query requests, the

Detail contains a Ret object with the actual field values you are interested in. For query

requests, the Detail contains a Ret list that contains the individual Ret objects.

An explanation of how to process Ret objects from this Ret list is described in Chapter 7,

“Handling Responses Using QBFC or qbXML.” It is fairly straightforward, using the

RetList object’s Count property to get the number of Ret objects and then using the GetAt

method to return the individual Ret object from the RetList.

Getting Data from the Ret Object

You can see the Ret object for each request in the OSR by clicking on the Response link in

the upper right of the OSR page.

Figure 32-5 on page 419 shows the Ret object for the ICustomer object in the OSR, with

the object name circled. Remember that the OSR contains primarily information about each

request and Ret object property (field).

If you click on the VB6 or VB.Net links at the upper right of the OSR, you’ll get context-

sensitive source code samples that show how to get data from a response message set

(IMsgSetResponse) that contains a customer Ret object.

Figure 32-5 The OSR Response object (Ret object) for Customer

420 Chapter 32: How to Use the QBFC Convenience Library

(c) 2013 Intuit Inc. All rights reserved.

Just like the request object described earlier, the properties listed for each Ret object in the

OSR are the actual property names you need to supply in order to get the data for that

property. For example, to get the Notes data from the customer Ret, you’d use this code in

VB:

MycustomerRet.Notes.GetValue

Objects and Methods Used in Processing Response Data

The following tables list the objects described in the previous paragraphs, along with the

their methods and properties. The request and Ret objects are not listed here because they

are documented fully in the OSR.

IMsgSetResponse

The following table shows the properties and methods for the message set response object:

IResponseList

The following table shows the properties and methods for the IResponseList object.

IMsgSetResponse
Method/Property Parameters Description

HRESULT ResponseList
([out, retval]
IResponseList* *pVal)

-pVal

Pointer to the returned
IResponseList object.

You need to invoke this on every
IMsgSetResponse object to get the
response list.

HRESULT ToXMLString
([out, retval] BSTR*
qbXMLResponse);

-qbXMLResponse

Pointer to the returned string
containing the response
message set in qbXML format.

This method is very handy during
diagnostics where you need to examine the
complete XML representation of the
responses that were returned from
QuickBooks. Useful for making sure you
are getting the results you expect.

IResponseList Method/
Property Parameters Description

HRESULT Count
([out, retval] long *pVal)

-pVal

Pointer to the returned number
of IResponse objects contained
in the list.

Useful for setting up a loop, with Count
used as the loop limit.

RESULT GetAt
(long index, [out,retval]
IResponse** retVal);

-index

The supplied index specifying
which IResponse object in the
list is to be returned.

-retVal

Pointer pointer to the returned
IResponse object.

The index is zero based, so the first
IResponse on the list has the index of 0.

Which Objects Do I Need to Process a Response? 421

(c) 2013 Intuit Inc. All rights reserved.

IResponse

The following table shows the properties and methods for the IResponse object.

IResponse Method/Property Parameters Description

HRESULT Detail
([out, retval] IQBBase** pVal);

-pVal

Pointer pointer to the
response contents

This returned value must be upcast in
most languages. For example, in VB.NET,
for example, you would get the Response
detail data into an ItemInventoryRet
object like this:

itemInventoryRet = response.Detail as
itemInventoryRet

HRESULT iteratorID
([out, retval] BSTR *pVal);

-pVal The iteratorID is returned only for queries
that use iterators to manage the amount
of data returned. You would need to get
this ID from the first reponse, then use it
in the succeeding iterations of the query.

HRESULT
iteratorRemainingCount
([out, retval] long *pVal);

-pVal This property indicates the number of
objects remaining to be iterated through.
This is helpful in optimizing the
MaxReturned value, among other things.

HRESULT retCount
([out, retval] long *pVal);

-pVal This value is available if the response is a
query response. It indicates the count of
Ret objects in the list.

HRESULT StatusCode
([out, retval] long *pVal);

-pVal Indicates success or the nature of any
failure. The value 0 indicates success.

HRESULT StatusMessage
([out, retval] BSTR *pVal);

-pVal A text message that provides more
information than just the status code
regarding the nature of the failure

HRESULT StatusSeverity
([out, retval] BSTR *pVal);

-pVal The severity level of the error.

HRESULT Type
([out, retval] IResponseType**
pVal);

-pVal The type of RetList or Ret object
contained in the IResponse. You need this
to specify the object to receive the
IResponse.Detail data.

422 Chapter 32: How to Use the QBFC Convenience Library

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager Object and Methods 423

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 33 1

QBFC LANGUAGE REFERENCE 1

This chapter is a brief language reference for the main objects and object methods in the

QBFC library. If you are not yet comfortable with QBFC programming, you should also

read Chapter 32, “How to Use the QBFC Convenience Library,” Chapter 6, “Building

Requests In QBFC and in qbXML,” and Chapter 7, “Handling Responses Using QBFC or

qbXML.”

QBSessionManager Object and Methods

The following table lists the QBSessionManager methods by functional area.

Table 33-1 QBSessionManager Methods/Properties Grouped by Functional Area

Functionality Supporting Methods/Properties Notes

Connection and
session
management.

BeginSession
CloseConnection
CommunicateOutOfProcess
EndSession
OpenConnection2
QBAuthPreferences

You need to invoke OpenConnection2
followed by BeginSession before you can
send requests to QB. (When you’re
finished, you need to invoke EndSession
to release resources.)

The optional QBAuthPreferences
property returns the IQBAuthPreferences
object that you can set to indicate the
level of QB access that your application
requires and the QB editions that your
application supports.

The use of CommunicateOutOfProcess
method is no longer recommended.
QuickBooks and the QBSDK are not
designed to run as a service and should
be run in the context of a user.

An alternate implementation to the
above is to implement a web service
designed to communicate with
QuickBooks via the QuickBooks Web
Connector

Create message set
request object.

CreateMsgSetRequest
CreateSubscriptionMsgSetRequest

CreateMsgSetRequest creates an empty
IMsgSetRequest object to which you
then append your desired request
objects.

CreateSubscriptionMsgSetRequest does
a similar thing, but creates the special
ISubscriptionMsgSetRequest object to
which you append event subscription
requests.

424 Chapter 33: QBFC Language Reference

(c) 2013 Intuit Inc. All rights reserved.

Send requests to the
request processor.

DoRequests
DoRequestsFromXMLString
DoSubscriptionRequests
DoSubscriptionRequestsFromXMLString

DoRequests sends the fully constructed
IMsgSetRequest object to QB.

DoRequestsFromXMLString does the
same thing, but uses a fully constructed
qbXML message set instead of QBFC
objects.

DoSubscriptionRequests and
DoSubscriptionRequestsFromXMLString
are used only for event subscription.

Convert qbXML to
QBFC objects

ToEventsMsgSet
ToMsgSetRequest
ToMsgSetResponse
ToSubscriptionMsgSetResponse

All of these are convenience methods
that take fully constructed qbXML
message sets and constructs the
appropriate QBFC objects.

Get context
information.

ConnectionType
GetCurrentCompanyFileName
GetVersion
QBXMLVersionsForSession
QBXMLVersionsForSubscription

The optional ConnectionType property
returns an indicator describing how the
application is connected to QB: local QB,
remote QB (RDS), or local QB with the
UI launched.

Error recovery ClearErrorRecovery
EnableErrorRecovery
ErrorRecoveryID
GetErrorRecoveryStatus
GetSavedMsgSetRequest
IsErrorRecoveryInfo
SaveAllMsgSetRequestInfo

Optional, but recommended properties
and methods used to implement
automated error recovery.

Functionality Supporting Methods/Properties Notes

QBSessionManager.BeginSession 425

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.BeginSession

IDL: HRESULT BeginSession ([in] BSTR qbFile, [in] ENOpenMode openMode)

VB: BeginSession(qbFile As String, openMode As ENOpenMode)

C#: void BeginSession (System.String qbFile , Interop.QBFC5.ENOpenMode

openMode)

Starts a session with the specified QuickBooks company file.

Parameters

qbFile Full Pathname of the specified QuickBooks company file.

QuickBooks need not be running if your application has been

authorized for automatic logins. Supply qbFile as NULL or an empty

string if you need to access the company file currently open in

QuickBooks. The qbFile param must be supplied.

openMode The desired access mode. It can be one of three values:

omSingleUser (specifies single-user mode)

omMultiUser (specifies multi-user mode)

omDontCare (accept whatever mode is currently in effect, or single-

user mode if no other mode is in effect)

Notice that if the company file is already open in one mode, your

application won’t be able to specify a different mode in

BeginSession. For this reason, you may want to consider the

omDontCare param, unless you really need single-user mode.

For background information on these modes, see Chapter 3, “The

Communication Model and Ways of Implementing It.”

IMPORTANT

If QuickBooks is currently running one company file, you
cannot access a different company file with BeginSession. If
one company file is already open in QB and you try to specify
a different company file name in the call to BeginSession you
will get an exception thrown or an HRESULT, depending on
your programming environment

Usage

Before invoking this method to start the session, your application must first invoke

QBSessionManager.OpenConnection2 followed by BeginSession to open communication

with QuickBooks. After successfully invoking OpenConnection2 and BeginSession, your

application can then invoke DoRequests to access company data.

If you’re in multi-user mode you may want to invoke this once and leave the session open

for subsequent accesses of the company data. If you’re in single-user mode, you may want

to close the session when you’re done with the current access, since no other application

426 Chapter 33: QBFC Language Reference

(c) 2013 Intuit Inc. All rights reserved.

will be able to access the current company file until you end your session. (Desktop

editions of QuickBooks do not limit the number of times a company file can be accessed in

a single session or the length of time a session can exist.)

Your application can change the mode from single user to multi-user if it is the only

application accessing the file including the QuickBooks UI. Changing the file mode means

that QuickBooks must close the file and re-open it. So if your app is the only one accessing

it, you would call EndSession from one mode, wait a moment for the file to close down,

then call BeginSession in the other mode.

Notice that your application must be authorized to access the specified company file. An

unauthorized application requires the specified QuickBooks company file to be currently

open in QuickBooks with the QuickBooks administrative user logged on, so that user can

perform the required authorization. (If an application is not yet authorized, and QuickBooks

is not running, BeginSession will fail.)

In auto-login mode it takes several seconds to start QuickBooks and return from a

BeginSession call.

Table 33-2 HRESULT Error Codes

BeginSession Code Sample

The following code sample shows a complete session life cycle. Every application needs to

use the QBSessionManager object as shown to open a connection and begin a session.

Every application needs to create an IMsgSetRequest object as shown, fill it with requests,

invoke DoRequests, and get the results from the returned IMsgSetResponse object.

Notice that this sample uses an empty customer query, which returns all customers, to keep

the sample short and sweet. For most requests, appended to the IMsgSetRequest object, you

would normally set more properties on the request. Also, the sample does nothing with the

response object, which is not trivial to traverse and process. However, processing response

data is covered in detail in Chapter 7, “Handling Responses Using QBFC or qbXML,” so

we won’t cover it here.

Error Code Meaning

0x8004040A Returned if there is already a company
data file open and it is different from the
requested one.

0x800040410 Returned if the company data file is
currently open in a mode other than the
one specified by your application.

0x80040414 Returned if QuickBooks is currently locked
in a modal state and cannot be accessed.

0x8004041B Returned if QuickBooks is unable to lock
the necessary information to allow your
application to access the specified
company data file. Try again later.

0x80040422 Returned if your application is trying to
access QuickBooks in single-user mode,
but there is another application already
accessing the specified company data file.

QBSessionManager.BeginSession 427

(c) 2013 Intuit Inc. All rights reserved.

Finally, we end the session and close the connection. You don’t have to do this after every

DoRequest, in fact, it is not efficient to program this way. But it does point out the necessity

of ending the session and closing the connection at some point, at the very least when your

application is shut down. If you don’t end session and close connection when you close

your application, the QuickBooks user will not be able to close the QuickBooks company.

Dim qbFile As String

qbFile = "C:\Program Files\Intuit\QuickBooks 2006\sample_product-based business.qbw"

Dim SessionManager As QBSessionManager

Set SessionManager = New QBSessionManager

SessionManager.OpenConnection2 "123", "Hello World", ctLocalQBDLaunchU

SessionManager.BeginSession qbFile, omDontCare

Dim RqMessageSet As IMsgSetRequest

Dim RespMessageSet As IMsgSetResponse

Set RqMessageSet = SessionManager.CreateMsgSetRequest("US", 5, 0)

RqMessageSet.AppendCustomerQueryRq

Set RespMessageSet = SessionManager.DoRequests(RqMessageSet)

SessionManager.EndSession

SessionManager.CloseConnection

428 Chapter 33: QBFC Language Reference

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.ClearErrorRecovery

HRESULT ClearErrorRecovery();

This method is more or less a “Big Hammer” that clears the error table stored in the

QuickBooks company file. This clear method impacts all integrated applications using the

company file, not just the application invoking it. For that reason, this method should be

called ONLY if you know or strongly suspect that the QuickBooks error table has become

corrupted and therefore must be cleared. (For more information, see Chapter 31, “Error

Recovery.”)

QBSessionManager.CloseConnection 429

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.CloseConnection

HRESULT CloseConnection ()

Closes the connection with QuickBooks. When the QBSessionManager object goes out of

scope, QBFC will automatically call CloseConnection if it wasn’t called explicitly before.

(It also calls EndSession, if necessary.)

CloseConnection Code Sample

See the sample provided under “BeginSession Code Sample.”

430 Chapter 33: QBFC Language Reference

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.CommunicateOutOfProcess

HRESULT CommunicateOutOfProcess(VARIANT_BOOL useOutOfProc)

Parameters

useOutOfProc Specify True to communicate with QuickBooks out-of-process, or

False for in-process communication.

The use of CommunicateOutOfProcess method is no longer recommended. QuickBooks

and the QBSDK are not designed to run as a service and should be run in the context of a

user.

This call is useful if your application must run as part of a windows service process and

therefore does not communicate with QuickBooks in-process (the normal type of

QuickBooks communication. You call this method prior to calling OpenConnection2 so the

SDK knows which request processor to use (qbXMLRP2e, in this case).

IMPORTANT

In order for this call to work, you must install and register (in
the Windows registry) the redistributable program
QBXMLRP2e.exe. This is located in the SDK install
subdirectory \tools\access\QBXMLRP2e

Usage

You cannot call this method if you currently have a connection open, as this will return an

error (HRESULT 0x80040313).

If this method is invoked and there is some problem creating the COM component required

for out-of-process communication, the error HRESULT 0x80040314 is returned.

You do not instantiate or reference QBXMLRP2E! All needed work is done for you simply

by making this call.

QBSessionManager.ConnectionType 431

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.ConnectionType

HRESULT ConnectionType([out, retval] QBXMLRPConnectionType* pVal);

Parameters

ConnectionType Pointer to the returned connection type indicating the currently

opened connection. The type returned will be one of the following

values: ctUnknown, ctLocalQBD, ctRemoteQBD, or

ctLocalQBDLaunchUI.

The type returned will be one of the following values that reflect the way the connection

was first opened:

• ctLocalQBD (local QuickBooks)

• ctRemoteQBD (RDS connection)

• ctLocalQBDLaunchUI (SDK application launched QuickBooks in interactive mode)

• ctUnknown

432 Chapter 33: QBFC Language Reference

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.CreateMsgSetRequest

HRESULT CreateMsgSetRequest ([in] BSTR country,

[in] short qbXMLMajorVersion,

[in] short qbXMLMinorVersion,

[out, retval] IMsgSetRequest** request)

Tells QBFC which version of qbXML your application is using, and receives the request

message set object in return. Notice that starting with QBFC3, CreateMsgSetRequest

requires all three parameters.

Parameters

country The country of the edition of QuickBooks to be used by your

application. There are three valid values: "US", "CA", and

"" (empty string). There is no default! so you must supply a value.

qbXMLMajorVersion The major version of qbXML to be used by your application. (For

example, if the version is 2.1, the major version is 2.)

qbXMLMinorVersion The minor version of qbXML to be used by your application. (For

example, if the version is 2.1, the minor version is 1.)

request The request message set object, to which you will add one or more

request messages.

NOTE

QBFC4 supports qbXML versions 1.0, 1.1, 2.0, 2.1, 3.0, and
4.0 for the U.S. QBFC4 supports versions 2.0 and 3.0 for
Canada.

Usage

It is important to set the qbXML version appropriately:

• Make sure all your end-users have a version of QuickBooks installed on their

computers that supports the qbXML version you specify.

• Note that you cannot use any qbXML functionality that was added since the version

you specify.

HRESULT Error Codes

• An error code of 0x8004030A will be returned if the given version of qbXML is not

supported by the version of QBFC being used.

Code Sample

See the code sample provided under “BeginSession Code Sample.”

QBSessionManager.CreateSubscriptionMsgSetRequest 433

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.CreateSubscriptionMsgSetRequest

HRESULT CreateSubscriptionMsgSetRequest(

short qbXMLMajorVersion,

short qbXMLMinorVersion,

[out, retval] ISubscriptionMsgSetRequest** request);

Creates and returns an interface pointer to ISubscriptionMsgSetRequest.

Parameters

qbXMLMajorVersion The major version of qbXML to be used by your application. (For

example, if the version is 4.0, the major version is 4.)

qbXMLMinorVersion The minor version of qbXML to be used by your application. (For

example, if the version is 4.0, the minor version is 0.)

request The request message set object, to which you will add one or more

subscription request messages.

434 Chapter 33: QBFC Language Reference

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.DoRequests

HRESULT DoRequests ([in] IMsgSetRequest* request,

[out, retval] IMsgSetResponse** responseSet)

Sends the specified XML request to QuickBooks and returns a response.

Parameters

request The request message set object containing any number of requests to

be processed by QuickBooks.

responseSet The parsed response message set object, which will contain a list of

responses, one for every request in the request message set.

Usage

Before sending the request set to QuickBooks for processing, this method verifies the given

request message set to make sure that all the mandatory fields in each of its requests have

been set and that no two mutually exclusive fields have been set.

HRESULT Error Codes

• An error code of 0x80040307 will be returned if there is an error verifying the requests

in the request set.

• An error code of 0x8004040C will be returned if no valid session currently exists.

• An error code of 0x80040423 will be returned if the given version of qbXML is not

supported by the QuickBooks SDK.

For more errors that DoRequests can return, see Appendix A, “Error Codes.”

DoRequests Code Sample

What is difficult about DoRequests is the constructing of the request message set required

prior to invoking DoRequests and the processing of the response that is returned from it.

These are covered in Chapter 6, “Building Requests In QBFC and in qbXML,” and Chapter

7, “Handling Responses Using QBFC or qbXML.”

A code sample showing the invocation of this method is provided under “BeginSession

Code Sample.”

QBSessionManager.DoRequestsFromXMLString 435

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.DoRequestsFromXMLString

HRESULT DoRequestsFromXMLString([in] BSTR qbXMLRequest,

[out, retval] IMsgSetResponse** responseSet);

Sends an XML request as a string rather than in an IMsgSetRequest object (as happens in

DoRequests).

Parameters

qbXMLRequest The request is not validated before it is sent. Any requestIDs within

the request must start with 0 and continue with 1, 2, and so on.

responseSet A parsed list of responses, one for every request in the request

message set. The responseSet will contain errors if the

qbXMLRequest string contains nonsequential requestIDs.

436 Chapter 33: QBFC Language Reference

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.DoSubscriptionRequests

HRESULT DoSubscriptionRequests(

ISubscriptionMsgSetRequest* request,

[out, retval] ISubscriptionMsgSetResponse** responseSet);

Sends the subscription request to the request processor and returns a response.

Parameters

request The request message set object containing any number of

subscription requests to be processed by QuickBooks.

responseSet The parsed response message set object, which will contain a list of

responses, one for every subscription request in the message set.

Usage

Before sending the request set to QuickBooks for processing, this method verifies the given

request message set to make sure that all the mandatory fields in each of its requests have

been set and that no two mutually exclusive fields have been set.

QBSessionManager.DoSubscriptionRequestsFromXMLString 437

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.DoSubscriptionRequestsFromXMLString

HRESULT DoSubscriptionRequestsFromXMLString(

BSTR qbXMLSubscriptionRequest,

[out, retval] ISubscriptionMsgSetResponse** responseSet);

Sends an XML request as a string rather than in an ISubscriptionMsgSetRequest object (as

happens in DoSubscriptionRequests).

Parameters

qbXMLSubscriptionRequest

Contains the subscription XML request. The request is not validated

before it is sent.

responseSet A parsed list of responses, one for every request in the request

message set.

438 Chapter 33: QBFC Language Reference

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.EnableErrorRecovery

HRESULT EnableErrorRecovery([in] VARIANT_BOOL bEnable);

HRESULT EnableErrorRecovery([out,retval] VARIANT_BOOL* bEnable);

Turns the automated error-recovery feature of QBFC on or off. (By default, the error

recovery feature is off.)

If error recovery is off (the default), requests are sent to QuickBooks without first checking

if a response from a previous request was not processed. If error recovery is on, requests

will not be sent to QuickBooks if an unprocessed response exists for a previous request.

QBSessionManager.EndSession 439

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.EndSession

HRESULT EndSession ()

Terminates the session with the current company data file. When the QBSessionManager

object goes out of scope, QBFC will automatically call EndSession if it wasn’t called

explicitly before. (It also calls CloseConnection, if necessary.)

If a company file was opened in auto-login mode, EndSession will close the file and enable

an interactive user to start QuickBooks on that computer.

EndSession Code Sample

A code sample showing the invocation of this method is provided under “BeginSession

Code Sample.”

440 Chapter 33: QBFC Language Reference

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.ErrorRecoveryID

HRESULT ErrorRecoveryID([out, retval] IQBGUIDType* *pVal);

Returns this application’s error-recovery ID, which will be used to store the application’s

error-recovery information to disk.

QBSessionManager.GetCurrentCompanyFileName 441

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.GetCurrentCompanyFileName

HRESULT GetCurrentCompanyFileName ([out, retval] BSTR* pFileName)

Returns the name (including path) of the QuickBooks company data file being accessed in

the current session.

HRESULT Error Codes

• An error code of 0x8004040C will be returned if no valid session currently exists.

For more errors that GetCurrentCompanyFileName can return, see Appendix A, “Error

Codes.”

442 Chapter 33: QBFC Language Reference

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.GetErrorRecoveryStatus

HRESULT GetErrorRecoveryStatus(

[out, retval] IMsgSetResponse** responseSet);

Gets the response status of an unprocessed response. Sends a status check request to

QuickBooks to get the status of the request that was stored to disk. The status check

response will be returned in an IMsgSetResponse object.

QBSessionManager.GetSavedMsgSetRequest 443

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.GetSavedMsgSetRequest

HRESULT GetSavedMsgSetRequest([out, retval] IMsgSetRequest** requestSet);

Reads the error recovery information (the original message request) that was stored to disk

into an IMsgSetRequest object and returns this object.

444 Chapter 33: QBFC Language Reference

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.GetVersion

HRESULT GetVersion ([out] short* majorVersion,

[out] short* minorVersion, [out] ENReleaseLevel* releaseLevel,

[out] short* releaseNumber)

Returns version and release information for the QBFC Library.

Parameters

majorVersion The major version for the QBFC Library. For example, for QBFC6

the major version is 6.

minorVersion The minor version for the QBFC Library. For example, for QBFC6

the minor version is 0.)

releaseLevel The release level for the QBFC Library. It can be one of four values:

rlPreAlpha, rlAlpha, rlBeta, or rlRelease.

releaseNumber The release number for the QBFC Library. It corresponds to a

specific build of the product software.

QBSessionManager.IsErrorRecoveryInfo 445

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.IsErrorRecoveryInfo

]HRESULT IsErrorRecoveryInfo(

[out, retval] VARIANT_BOOL* bIsErrorRecoveryInfo);

Returns true or false depending on whether error-recovery information is stored on the disk

for this application/company-file pair.

446 Chapter 33: QBFC Language Reference

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.OpenConnection2

HRESULT OpenConnection2 ([in] BSTR appID, [in] BSTR appName, [in]

ENConnectionType connType)

Establishes a connection between QuickBooks and the client application.

Parameters

appID Normally not assigned. Use an empty string for appID.

appName The application name used in the log file, in the authorization dialog

box, and in menu extensions. This parameter cannot be NULL or an

empty string.

connType Specify a value of ctUnknown, ctLocalQBD, ctRemoteQBD, or

ctLocalQBDLaunchUI.

Usage

During the connection process, QuickBooks checks whether your application contains a

valid digital signature, which indicates that the application has been certified as trusted.

Each call to OpenConnection2 has a small performance cost, so your application, when

appropriate, should allow its users to run multiple sessions in a single connection.

QuickBooks does not limit the number of consecutive sessions that can be held in a single

connection or the length of time a connection can exist.

HRESULT Error Codes

• An error code of 0x80040308 will be returned if QBFC cannot communicate with the

QuickBooks SDK.

• An error code of 0x80040309 will be returned if the QuickBooks SDK is a pre-release

version.

For more errors that OpenConnection2 can return, see Appendix A, “Error Codes.”

OpenConnection2 Code Sample

A code sample showing the invocation of this method is provided under “BeginSession

Code Sample.”

QBSessionManager.QBAuthPreferences 447

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.QBAuthPreferences

HRESULT QBAuthPreferences([out, retva] IQBAuthPreferences**

ppAuthPreferences)

Returns the IQBAuthPreferences object to be used to set or get authorization preferences.

Parameters

**ppAuthPreferences

Pointer pointer to the returned preferences object.

You cannot call this on remote connections, such as via RDS. An error (0x8004042A)

results if you attempt it.

448 Chapter 33: QBFC Language Reference

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.QBXMLVersionsForSession

HRESULT QBXMLVersionsForSession

([out, retval] SAFEARRAY (BSTR)* ppsa);

Indicates which versions of the qbXML specification are supported by the QuickBooks

program to which your application is connected in this session. Note that this information

might be different from the information returned by a HostQuery request, as described in

the Concepts Manual. HostQuery returns the complete list of all qbXML versions

supported by the currently open connection, which is usually the information your

application will require.

Parameters

ppsa Array of qbXML version numbers that the QuickBooks Request

Processor supports. For example, the array contains 1.0, 1.1, 2.0,

2.1, 3.0, 4.0, 5.0,and 6.0 if your application is using the

Request Processor from QuickBooks 2007 (U.S. edition). It contains

CA2.0 if your application is using the Request Processor from the

2003 Canadian edition of QuickBooks.

Usage

Your application is responsible for freeing the memory used for the ppsa array. For

example, to release the memory for the array when using the C++ language, call

SafeArrayDestroy(ppsa).

For sample code and a description of how to use QBXMLVersionsForSession, see Chapter

37, “Making Your Application Robust.”

QBSessionManager.QBXMLVersionsForSubscription 449

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.QBXMLVersionsForSubscription

HRESULT QBXMLVersionsForSubscription([out, retval] SAFEARRAY (BSTR)**

ppsa);

Returns an array containing a list of qbXML versions that are available for subscription

requests.

Parameters

ppsa Pointer pointer to an array of binary strings that specify the versions

of the qbXML specifications that support the SDK event subscription

feature. Currently the possible values are 3.0 and 4.0.

Usage

Your application is responsible for freeing the memory used for the ppsa array. For

example, to release the memory for the array when using the C++ language, call

SafeArrayDestroy(ppsa).

450 Chapter 33: QBFC Language Reference

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.SaveAllMsgSetRequestInfo

HRESULT SaveAllMsgSetRequestInfo([in] VARIANT_BOOL bSaveAll);

HRESULT SaveAllMsgSetRequestInfo([out,retval] VARIANT_BOOL* bSaveAll);

Indicates whether the error-recovery feature of QBFC should save the entire set of

information for a MsgSetRequest:

• If SaveAllMsgSetRequestInfo is true, the entire contents of the MsgSetRequest is saved

to disk for error recovery.

• If SaveAllMsgSetRequestInfo is false (the default), only the NewMessageSetID is

saved.

Get/Set – VARIANT_BOOL which specifies whether to save the entire MsgSetRequest

information.

Return – HRESULT

QBSessionManager.ToEventsMsgSet 451

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.ToEventsMsgSet

HRESULT ToEventsMsgSet(

BSTR qbXMLEventsResponse,

short qbXMLMajorVersion,

short qbXMLMinorVersion,

[out, retval] IEventsMsgSet** responseSet);

Parses the XML response and returns it in an IEventMsgSetResponse object.

IMPORTANT

This method performs no version or qbXML validation. You are
responsible for supplying a valid qbXML string.

Parameters

qbXMLEventsResponse

The qbXML response document (as a string) sent from QuickBooks

after a subscribed event occurs.

qbXMLMajorVersion The major version of qbXML to be used for this operation. (For

example, if the version is 4.0, the major version is 4.)

qbXMLMinorVersion The minor version of qbXML to be used for this operation. (For

example, if the version is 4.0, the minor version is 0.)

responseSet The response message set object, which will contain a list of

responses, one for every request in the request message set.

452 Chapter 33: QBFC Language Reference

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.ToMsgSetRequest

HRESULT ToMsgSetRequest(

[in] BSTR qbXMLRequest,

[out, retval] IMsgSetRequest** requestSet);

Takes qbXML request text and parses it into an IMsgSetRequest object. Reads the qbXML

major and minor version numbers from the request.

QBSessionManager.ToMsgSetResponse 453

(c) 2013 Intuit Inc. All rights reserved.

QBSessionManager.ToMsgSetResponse

HRESULT ToMsgSetResponse ([in] BSTR qbXMLResponse,

[in] BSTR country,

[in] short qbXMLMajorVersion,

[in] short qbXMLMinorVersion,

[out, retval] IMsgSetResponse** responseSet)

Parses the XML response and returns it in a response message set object.

IMPORTANT

This method performs NO version or qbXML validation of the
supplied XML string. You are responsible for supplying a valid
string to this method call.

Parameters

country The country of the edition of QuickBooks.

qbXMLResponse The qbXML response document (as a string) that gets returned from

QuickBooks after processing a request message set sent via the

qbXML request processor. Each response in the qbXMLResponse

string must have a requestID attribute, and these requestIDs must be

consecutive, starting at 0.

qbXMLMajorVersion The major version of qbXML to be used for this operation. (For

example, if the version is 6.0, the major version is 6.)

qbXMLMinorVersion The minor version of qbXML to be used for this operation. (For

example, if the version is 6.0, the minor version is 0.)

responseSet The response message set object, which will contain a list of

responses, one for every request in the request message set.

NOTE

QBFC6 supports qbXML versions 1.0, 1.1, 2.0, 2.1, 3.0, 4.0,
5.0 and 6.0.

HRESULT Error Codes

• An error code of 0x80040301 will be returned if there is an internal error interpreting

qbXMLResponse.

• An error code of 0x8004030A will be returned if the given version of qbXML is not

supported by QBFC.

454 Chapter 33: QBFC Language Reference

(c) 2013 Intuit Inc. All rights reserved.

QQBSessionManager.ToSubscriptionMsgSetResponse

HRESULT ToSubscriptionMsgSetResponse(

BSTR qbXMLSubscriptionResponse,

short qbXMLMajorVersion,

short qbXMLMinorVersion,

[out, retval] ISubscriptionMsgSetResponse** responseSet);

Parses the XML response and returns it in an ISubscriptionMsgSetResponse object.

IMPORTANT

This method performs no version or qbXML validation. You are
responsible for supplying a valid qbXML string.

Parameters

qbXMLSubscriptionResponse

The qbXML response document (as a string) that gets returned from

QuickBooks after processing a subscription request message.

qbXMLMajorVersion The major version of qbXML to be used for this operation. (For

example, if the version is 6.0, the major version is 6.)

qbXMLMinorVersion The minor version of qbXML to be used for this operation. (For

example, if the version is 4.0, the minor version is 0.)

responseSet The response message set object, which will contain a list of

responses, one for every request in the request message set.

IQBAuthPreferences Object and Properties 455

(c) 2013 Intuit Inc. All rights reserved.

IQBAuthPreferences Object and Properties

The QBSessionManager has a QBAuthPreferences property that returns the

IQBAuthPreferences object that you can set to indicate the level of QB access that your

application requires and the QB editions that your application supports. The following table

shows the properties you can use.

Table 33-3 IQBAuthPreferences Properties

Functionality Property Notes

Specify which QuickBooks
editions your application
supports.

PutAuthFlags By default, QB Pro, Premier, and
Enterprise are supported. If you
want your application to support a
subset of these, or support QB
Simple Start edition, you need to set
this property accordingly.

Is your application read-only,
or does it also write to QB?

GetIsReadOnly
PutIsReadOnly

Does your application need
to run in unattended mode?

GetUnattendedModePref
PutUnattendedModePref

Does your application need
access to personal data in
QB?

GetPersonalDataPref
PutPersonalDataPref

Is the IQBAuthPreferences
object and properties
supported by the QuickBooks
currently running?

WasAuthPreferencesObeyed

456 Chapter 33: QBFC Language Reference

(c) 2013 Intuit Inc. All rights reserved.

IQBAuthPreferences.GetIsReadOnly

HRESULT GetIsReadOnly(VARIANT_BOOL *pIsReadOnly)

Returns the application’s read-only access requirements from the IQBAuthPreferences

object.

Parameters

**pIsReadOnly Pointer to the returned read-only preferences.

IQBAuthPreferences.GetPersonalDataPref 457

(c) 2013 Intuit Inc. All rights reserved.

IQBAuthPreferences.GetPersonalDataPref

HRESULT GetPersonalDataPref(ENPersonalDataPrefType *pPersonalDataPref)

Returns the application’s personal data access requirements from the IQBAuthPreferences

object.

Parameters

pPersonalDataPref

Pointer to the returned preferences setting. Returns pdptRequired,

pdptOptional, or pdptNotNeeded.

A value of pdptRequired means that your application will not run unless the administrative

user grants access to personal data. A value of pdptOptional means that the application may

use personal data, but can still run if the user does not grant it that access.

A value of pdptNotNeeded means that your application does not use personal data and the

user will not have the opportunity to grant it that access. If your application attempts to

access personal data, any personal data will be automatically filtered out and will not

appear in the responses to requests.

458 Chapter 33: QBFC Language Reference

(c) 2013 Intuit Inc. All rights reserved.

IQBAuthPreferences.GetUnattendedModePref

HRESULT GetUnattendedModePref(ENUnattendedModePrefType

*pUnattendedModePref)

Returns the application’s unattended mode requirements from the IQBAuthPreferences

object.

Parameters

*pUnattendedModePref

Pointer to the returned setting, which will be either umptRequired or

umptOptional.

IQBAuthPreferences.PutAuthFlags 459

(c) 2013 Intuit Inc. All rights reserved.

IQBAuthPreferences.PutAuthFlags

HRESULT PutAuthFlags([in] long authFlags);

For a description on how to use this and how to construct authFlags, see Chapter 5,

“Accessing Desktop QuickBooks Editions.”

460 Chapter 33: QBFC Language Reference

(c) 2013 Intuit Inc. All rights reserved.

IQBAuthPreferences.PutIsReadOnly

HRESULT PutIsReadOnly(VARIANT_BOOL isReadOnly)

Invoked on the IQBAuthPreferences object to specify whether your application needs read-

only access to the company file.

Parameters

isReadOnly Specify True if your application accesses QuickBooks only in read

mode. Specify False if your application needs to write data to

QuickBooks.

If your application specifies True, then the user must authorize read-only access (and

whatever other preferences are currently specified in the IQBAuthPreferences object). If

your application subsequently attempts to write data to QuickBooks, it will not be allowed

to write and an error will be returned in the responses that attempts to write data.

IQBAuthPreferences.PutPersonalDataPref 461

(c) 2013 Intuit Inc. All rights reserved.

IQBAuthPreferences.PutPersonalDataPref

HRESULT PutPersonalDataPref(ENPersonalDataPrefType personalDataPref)

Invoked on the QBAuthPreferences object to specify your application’s requirements

regarding access to personal data in the company file.

Parameters

personalDataPref

Specify pdptRequired, pdptOptional, or pdptNotNeeded.

A value of pdptRequired means that your application will not run unless the administrative

user grants access to personal data. A value of pdptOptional means that the application may

use personal data, but can still run if the user does not grant it that access.

A value of pdptNotNeeded means that your application does not use personal data and the

user will not have the opportunity to grant it that access. If your application attempts to

access personal data, any personal data will be automatically filtered out and will not

appear in the responses to requests.

462 Chapter 33: QBFC Language Reference

(c) 2013 Intuit Inc. All rights reserved.

IQBAuthPreferences.PutUnattendedModePref

HRESULT PutUnattendedModePref(ENUnattendedModePrefType UnattendedModePref)

Invoked on the QBAuthPreferences object to specify whether your application needs

unattended mode (auto-login) access to the company file.

Parameters

UnattendedModePref

Specify umptRequired or umptOptional.

Specify umptRequired if your application must be able to run in unattended mode or

umptOptional if such access is not required.

IQBAuthPreferences.WasAuthPreferencesObeyed 463

(c) 2013 Intuit Inc. All rights reserved.

IQBAuthPreferences.WasAuthPreferencesObeyed

HRESULT WasAuthPreferencesObeyed(VARIANT_BOOL *pWasAuthPreferencesObeyed)

Returns verification whether the current version of QuickBooks supports the

IQBAuthPreferences object property and methods.

Parameters

pWasAuthPreferencesObeyed

Pointer to the returned value. True means there is support for

IQBAuthPreferences, False means there is no support.

This method is useful for determining whether the QuickBooks currently being accessed is

capable of supporting the authorization preferences feature.

464 Chapter 33: QBFC Language Reference

(c) 2013 Intuit Inc. All rights reserved.

IMsgSetRequest Object and Methods

The IMsgSetRequest object contains the requests to be processed by QuickBooks and is

supplied in a QBSessionManager.DoRequests method invocation. The individual requests

are appended to this object via the appropriate Append method.

Table 33-4 IMsgSetRequest Methods/Properties

Functionality
Supporting Methods/
Properties Notes

Append request to the
message set.

AppendARRefundCreditCard
AddRq
.
.
.
AppendVendorTypeQueryRq

This object has one Append* method for each
request listed in the OSR for QBFC.

The append method for a request appends an
empty request object and returns that request
object so that you can set its properties (fully
construct it) as you want.

For example, AppendARRefundCreditCardAddRq
returns the object
IAppendARRefundCreditCardAdd, which is the top
level object listed in the OSR. The OSR provides
information on each property for that request
object.

Set message set-level
attributes that apply to
all requests in the
message set.

Attributes This property returns the IAttributeRqSet object,
which you would need if you wanted to determine
the current attribute settings in the request set.

IAttributeRqSet contains the attributes that are
currently in effect for all requests in the message
set.

QuickBooks supports several attributes, which
are documented in the OSR under the Attributes
link in the main OSR page.

Empty the message set
so it can be re-used.

ClearRequests Removes all requests currently appended to the
request message set.

Get the requests
contained in a message
set object.

RequestList You probably will seldom use this property. You
would use this property if you wanted to get one
or more requests from the request message set.
The IRequestList object returned has a count and
a GetAt method for returning individual IRequest
objects from the list.

Once you have the IRequest object, you can use
its RequestID, Type, or Detail methods as
desired. The Detail is processed exactly like its
IResponse counterpart, which is thoroughly
covered in Chapter 7, “Handling Responses Using
QBFC or qbXML.”

IMsgSetRequest Object and Methods 465

(c) 2013 Intuit Inc. All rights reserved.

Dump out the contents
of the message set in
qbXML.

ToXMLString This method is very handy during diagnostics
where you need to examine the complete XML
representation of the requests that were built in
QBFC. Useful for making sure you are getting the
requests you expect.

Check the message set
for validity.

Verify The DoRequests method causes validation to be
run automatically. However, if you need to
validate the requests for proper construction
before you invoke DoRequests, you can use this
method.

Functionality
Supporting Methods/
Properties Notes

466 Chapter 33: QBFC Language Reference

(c) 2013 Intuit Inc. All rights reserved.

IMsgSetRequest.Append*

HRESULT PutUnattendedModePref(ENUnattendedModePrefType UnattendedModePref)

Invoked on the QBAuthPreferences object to specify whether your application needs

unattended mode (auto-login) access to the company file.

Parameters

UnattendedModePref

Specify umptRequired or umptOptional.

Specify umptRequired if your application must be able to run in unattended mode or

umptOptional if such access is not required.

IMsgSetRequest.Attributes 467

(c) 2013 Intuit Inc. All rights reserved.

IMsgSetRequest.Attributes

HRESULT Attributes([out, retval] IAttributesRqSet**pVal);

Invoked on the QBAuthPreferences object to specify whether your application needs

unattended mode (auto-login) access to the company file.

Parameters

UnattendedModePref

Specify umptRequired or umptOptional. Specify umptRequired if

your application must be able to run in unattended mode or

umptOptional if such access is not required.

468 Chapter 33: QBFC Language Reference

(c) 2013 Intuit Inc. All rights reserved.

IMsgSetResponse Object and Methods

The IMsgSetRequest object contains the requests to be processed by QuickBooks and is

supplied in a QBSessionManager.DoRequests method invocation. The individual requests

are appended to this object via the appropriate Append method.

Table 33-5 .IMsgSetResponse Methods/Properties

IRequest Object and Methods

Unlike the IResponse object, which is processed after the DoRequest invocation, the

IResponse object is normally seldom processed. However several properties are available

for your use if you need to process an IRequest. We won’t describe the processing of an

IRequest as it is nearly identical to processing an IResponse, which is covered in detail in

Chapter 7, “Handling Responses Using QBFC or qbXML.”

Functionality
Supporting Methods/
Properties Notes

Get the message set-level
attributes that apply to all
responses in the message
set.

Attributes This property returns the IAttributeRqSet object,
which you would need if you wanted to determine
the current attribute settings in the response set.

IAttributeRqSet contains the attributes that are
currently in effect for all requests in the message
set.

QuickBooks supports several attributes, which
are documented in the OSR under the Attributes
link in the main OSR page.

Get the responses
contained in a message
set object.

ResponseList You need to invoke this on every
IMsgSetResponse object returned from the
DoRequests call to get the response list and
begin processing the responses from QB.

You need to get the individual IResponse objects
from this response list, which contain the actual
data. This entire process is thoroughly covered in
Chapter 7, “Handling Responses Using QBFC or
qbXML.”

Dump out the contents of
the message set object in
qbXML format.

ToXMLString This method is very handy during diagnostics
where you need to examine the complete qbXML
representation of the responses that were built in
QBFC. Useful for making sure you are getting the
responses you expect.

IResponse Object and Methods 469

(c) 2013 Intuit Inc. All rights reserved.

Table 33-6 IRequest Methods and Properties

IResponse Object and Methods

Each IResponse object contained in the IResponseList is normally processed after the

DoRequest invocation. The processing of IResponse is covered in detail in Chapter 7,

“Handling Responses Using QBFC or qbXML.”

Table 33-7 IResponse Methods and Properties

Functionality Method/Property Notes

Get the RequestID RequestID

Determine the request type. Type This property indicates the request type. For
example, a customer query request would have the
response type rtCustomerQueryRq.

It should not be confused with the Detail object’s
Type property, which indicates the detail object
type.

Return the data in IRequest
to the proper object type.

Detail

Functionality Method/Property Notes

Did the request succeed? If
not, why not?

StatusCode
StatusSeverity
StatusMessage

You need to check every IResponse for success
before proceeding. A status code of 0 means the
request succeeded.

Determine the response
type.

Type This property indicates the response type. For
example, a customer query request would have the
response type rtCustomerQueryRs.

It should not be confused with the Detail object’s
Type property, which indicates the detail object
type.

Return the data in
IResponse to the proper Ret
object type.

Detail The response detail should always be checked for
the presence of data BEFORE you do any further
processing (in VB terms, response.Detail must not
be Nothing). Attempts to process an empty Detail
object can result in a runtime crash.

Iterate through a large set
of query results.

iteratorID
iteratorRemainingCou
nt

Supports the recommended method for iterating
through a large set of query results. See Chapter 8,
“Creating Queries.”

Get the approximate count
of objects returned from a
query.

retCount The count is approximate because additions and
deletions could occur after the time of the query
that would affect the accuracy of the count.

470 Chapter 33: QBFC Language Reference

(c) 2013 Intuit Inc. All rights reserved.

Can I Sign ActiveX or Java Applications? 471

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 34 1

DIGITALLY SIGNING YOUR CODE 1

The QuickBooks SDK checks for the existence and validity of a digital code signature

when your application undergoes the authorization process that is invoked whenever your

application accesses QuickBooks.

This authorization process is implemented using Microsoft’s Authenticode technology to

determine the status of an application’s code signature. Obtaining an Authenticode

compatible certificate from an authority is described later in this chapter. Any certificate

authority should work; however, we have had good results using Verisign, Equifax, and

Thawte.

Can I Sign ActiveX or Java Applications?

No. You cannot digitally sign ActiveX or Java applications. QuickBooks looks for the

executable process that is connecting to it via COM and will not be able to find the

signature. For example, if you use a java to COM bridge such as JACOB, you are going

through a .dll so when QuickBooks traces back it's going to find the java virtual machine

and not your signature.

About Microsoft Authenticode

An application signed using Authenticode provides security to the QuickBooks user in two

ways:

• Authenticity: the user can be confident that the code has indeed originated from you,

the software publisher.

• Integrity: the code contained in your application has not been tampered with after it was

published.

Notice that Authenticode does not guarantee to end users that it is safe to run the code

signed and contained in your application. Neither does Authenticode provide copy

protection for your software.

What is a Digital Certificate?

A digital certificate is a set of data, which uniquely identifies you, an entity, and is issued

by a certification authority (CA) only after that authority has verified your identity. It

contains information including your (the owner’s) public key, your name, an expiration

date, the name of the Certification Authority that issued the certificate, and a serial number.

472 Chapter 34: Digitally Signing Your Code

(c) 2013 Intuit Inc. All rights reserved.

The data set includes your public cryptographic key. When you sign your code,

Authenticode reads the public key that is retrieved from the certificate information

contained in your signed code. This public key is used to verify your identity. (More

information on the public key is provided later in this appendix.)

A digital certificate can come in various formats. Of these, the X.509 certificate format is

an emerging standard that has been widely used for many years.

The Certificate Authority

A Certificate Authority is an entity that is entrusted to issue certificates asserting that the

recipient individual, machine or organization requesting the certificate fulfills the

conditions of an established policy. The CA could be an external commercial CA, or it

could be a CA run by your company.

Simply put, it is the Certificate Authority that issues digital certificates. A certificate

authority such as VeriSign or Thawte can provide digital certificates.

Code Signing

Once you develop and test your code, you can run it through a one-way hash function that

produces a fixed-length "digest." The digest is then encrypted with your private key; and

combined into a signature block with the name of the hash algorithm and the certificate.

As mentioned previously, the certificate holds information such as your name, the public

key, and the name of the CA’s certificate. This signature block is then inserted back into the

portable-executable file format under a reserved section, and the code is then distributed.

When your application attempts to access QuickBooks, the authorization process that uses

Authenticode is invoked. In this process, the signature is extracted, the CA that

authenticated the certificate is determined and your public key distributed by that CA is

read. Using this public key, the digest is decrypted. The specified digest is run on the code

again, creating a new digest. If the code has not been modified since it was signed, the new

digest should match the old one. If the two digests don’t match, it implies that either the

code was modified, or the public and private keys aren’t a matched pair. In either case, the

code becomes suspect and the QuickBooks user is warned about this fact.

The Internet Client Software Developer’s Kit (Microsoft’s Authenticode toolkit) provides

the necessary utilities to make it easy to follow the code-signing process.

Obtaining a Digital Certificate

You need to apply for a Software Publisher’s Certificate from an appropriate Certificate

Authority. As mentioned earlier, make sure that you are asking for a Software Publisher’s

Certificate that is compatible with Microsoft Authenticode technology. The actual

application process may differ depending on which Certificate Authority you use.

Signing Your Code 473

(c) 2013 Intuit Inc. All rights reserved.

Along with your application, you need to submit the details such as your company

registration and organizational information to the Certificate Authority. This is required by

the Certificate Authority to verify your identity.

Commercial CA Entities You Can Use

The following are well-known Certificate Authorities that issue digital certificates

compatible with Authenticode:

• VeriSign : http://www.verisign.com

• Thawte:http://www.thawte.com

Obtaining the Certificate

When the Certificate Authority verifies the information that you submitted, it will inform

you of this fact and provide you with guidelines to download the certificate. It may take

about 3 to 5 days for the Certificate Authority to complete this step.

At this stage, you will have obtained the Certificate as a Software Publishing Certificate

(.spc) file.

Signing Your Code

This section describes the process of using a digital certificate to sign application code. It

describes the process using QuickBooks, a sample application to be signed, and Microsoft’s

Internet Client Software Developer’s Kit.

To perform code signing, you will be using the following:

• The private key stored as a .pvk file, generated during the certificate application

process.

• The Software Publishing Certificate (.spc) file received from the Certificate Authority.

You may sign your code at a stage just preceding your code distribution process. Code

signing is a quick process, not lasting more than a few minutes. You need to only sign your

code once each time you rebuild or distribute your application.

Do You Have Everything You Need?

The following is a checklist of the items you will need to sign your application:

• A Software Publisher’s Certificate compatible with Microsoft Authenticode.

• Internet Explorer (IE) version 4.0 or above.

• The Internet Client Software Developer’s Kit downloaded from Microsoft’s web site

and installed on your system.

474 Chapter 34: Digitally Signing Your Code

(c) 2013 Intuit Inc. All rights reserved.

An Example Using a Test Application

Suppose we have an application called Sally’s Report Writer, represented by TestApp.exe,

This application sends a qbXML request to QuickBooks, which contains a request for

querying vendor information for reporting. Suppose the UI looks like this:

When "Send request to QuickBooks" is selected, QuickBooks goes through the

authorization process. QuickBooks then displays the following information about the

application:

The Application calls itself "Test Application". This application does not have a certificate.

QuickBooks cannot verify the developer’s identity.

This information is displayed in a dialog box to the QuickBooks user, as shown below:

Signing Your Code 475

(c) 2013 Intuit Inc. All rights reserved.

Now, lets see what happens after we digitally sign this application and observe how

QuickBooks displays information about the certification to the user.

Signing Code With the Internet Client Software Developer’s Kit

You use Internet Client Software Developer’s Kit to sign the application. Notice that the

following programs are installed as part of the Internet Client Software Developer’s Kit

(working with IE-5.X):

• MakeCert, which creates a test X.509 certificate.

• Cert2SPC, which creates a test SPC.

• SignCode, which signs a file.

• ChkTrust, which checks the validity of the file.

• MakeCTL, which creates a certificate-trust list.

• CertMgr, which manages certificates, certificate-trust lists, and certificate-revocation

lists.

476 Chapter 34: Digitally Signing Your Code

(c) 2013 Intuit Inc. All rights reserved.

• SetReg, which sets registry keys that control the certificate-verification process.

• MakeCat, which creates a combined catalog of files to avoid multiple trust dialogs.

The installation process places these programs in \inetsdk\bin by default. The only one of

these application that you absolutely need to use is SignCode.

However, if you want to familiarize yourself with the signing process, you can create a test

digital certificate and use this to sign your code. You may perform this test even before you

apply for a digital certificate from a Certificate Authority of your choice, or while waiting

for your request to be processed.

To create a test certificate, use the MakeCert, and Cert2SPC components of the Internet

Client Software Developer’s Kit. For additional information on creating a test certificate,

refer to the Microsoft documentation.

Signing the test application

Let us incorporate digital code signing in our application "Sally’s report Writer",

represented by TestApp.exe. We accomplish this by using the program SignCode. Follow

these steps:

1. Run SignCode. This brings up the Digital Signature wizard.

2. In the wizard, click Next.

3. In the file selection dialog, browse for TestApp.exe, select it, and click Next.

4. In the next dialog, select Custom and then click Next.

5. Specify the location of the certificate file (.spc), then browse to the private key file

(.pvk) when prompted.

6. Provide the private key password when prompted.

7. Select the "SHA1" Hash algorithm when prompted.

8. Select "All certificates in the certificate path including root" and "No additional

certificates" when prompted.

9. Select "Select from Store" to display the list of certificates. You should see the

certificate received from the Certificate Authority in the list.

Signing Your Code 477

(c) 2013 Intuit Inc. All rights reserved.

10. Select the desired certificate and click OK.

11. Click Next to display details for this certificate.

12. Click View Certificate to view the details for the certificate.

478 Chapter 34: Digitally Signing Your Code

(c) 2013 Intuit Inc. All rights reserved.

13. Click Next. This is where you must specify an appropriate description of your

application for display to the QuickBooks user. This value must match exactly the

application name you supply in the AppName parameter of the OpenConnection2

call! For our purpose, let us specify the description as "Report Writer for QuickBooks

Vendor Information", and the web URL as "http://www.SallysReports.com".

14. Click Next.

15. Leaving the timestamp box unchecked, click Next.

16. Click Finish. SignCode displays the message: “The Digital Signing wizard was

completed successfully.”

Testing the Digitally Signed Application

At this stage you have a digitally signed application TestApp.exe. If you run this with

QuickBooks, you can observe the change in the User Interface for the authorization process

in QuickBooks.

Signing Your Code 479

(c) 2013 Intuit Inc. All rights reserved.

The certification information is displayed to the QuickBooks user. QuickBooks displays the

Application Name "Report Writer for QuickBooks Vendor Information" and the

Developer’s Name "Sally’s Report Writer". The fact that the Certificate Authority "Test

Certificate Authority" has verified your identity is also displayed.

Useful web site links

You may find the following web site links useful for additional reference:

Certificate Authorities:

• http://www.verisign.com

• http://www.thawte.com

Information on Authenticode

• http://www.microsoft.com

480 Chapter 34: Digitally Signing Your Code

(c) 2013 Intuit Inc. All rights reserved.

Where to Obtain the Internet Client Software Developer’s Kit

• http://msdn.microsoft.com

Best Practices 481

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 35 1

TIPS AND TECHNIQUES 1

This chapter describes “best practices” for programming with the QuickBooks SDK. It also

suggests what to do when you encounter problems before you contact QuickBooks Intuit

Partner Platform (IPP) Developer Support.

Best Practices

This section offers some friendly advice in the form of best practices with these intentions:

to help safeguard your application against possible security exposures, errors, excessive

data transport (how to use filters and purposeful construction of messages); and possibly to

improve application performance. These best practices are suggestions, not requirements.

They are the outcome of developer experience and are offered in the spirit of

encouragement:

• Sign your code (using the digital signing process).

The QuickBooks SDK provides for application authentication through use of a digital

signature within the application. A signed application offers your user greater

confidence in the authenticity of your application. Your signed application is more

secure from the users’ perspective in relation to their QuickBooks company file data.

• Store company file data in a secure manner.

For applications that store company file data, be certain to store the data in a secure

manner using an internal database or file. If practical, encrypt data. Do not store

QuickBooks company file data in the regular file system, exposing it to security

breaches. Also, if you save qbXML text streams or discrete object requests between

calls, store them in a secure manner. For instance, some applications integrate storage

of qbXML within their databases removing the text stream only after they complete

processing the response code and exit their message recovery routines.

• Be purposeful in your construction of messages:

> Use well-defined filters in query requests. Consider this maxim: the briefer the

request, the more verbose the response.

If an application is sending a query request and you don’t want all of the data

of a certain type returned to you, use filters to limit the number of response

objects returned and the data transported. The more verbose the request (the

more filters), the briefer (more pertinent) the response.

> For multiple, unbounded queries, issue separate requests to limit the amount of data

transmitted in one request. Alternatively, use the MaxReturned filter in the query

to limit the number of objects returned by a single call. See Chapter 8, “Creating

Queries.”

> Do not include empty elements in requests without express intention and only in

Modify requests or certain Add requests to clear the element value (see Chapter 10,

482 Chapter 35: Tips and Techniques

(c) 2013 Intuit Inc. All rights reserved.

“Modifying and Deleting Transactions and List Objects,” on which values can be

cleared in an Add request).

> If you are using qbXML, pay attention to encoding issues. Be aware of your use of

special characters, including ampersand (&), single quotes (‘), double quotes (“),

greater-than (>), and less-than (<) characters.

• Always run the qbXML Validator on your qbXML requests as you develop the code.

Better yet, incorporate your own qbXML request validation routines in your code. For

QBFC, use the Verify method to check the validity of your messages.

• Call GetCurrentCompanyFileName after BeginSession with qbCompanyFileName set

to NULL.

If you pass in NULL for the company file name qbCompanyFileName in BeginSession

because the file is already open, call GetCurrentCompanyFileName immediately after

calling BeginSession to determine the identity of the file. Under these circumstances,

before you modify any data in that company file, verify the company file name with the

user through your application interface to ensure that your application acts on the

intended company data file.

• Provide a mechanism for your user to run your application without having to provide a

company file name to the BeginSession call.

This technique is useful in troubleshooting certain application problems and allows the

user to continue using the software while a software problem is being investigated and

resolved.

• Always parse the received response and analyze the status code and status severity for

every response object.

• If you are using qbXML, provide your application with the ability to write application-

generated qbXML routinely to a file for debugging purposes. Also, enable it with a

debug switch that could be used during production time by your technical support

organization to write application-generated qbXML to a file.

• Implement application features that provide your technical support organization with

means of helping your users resolve problems. For instance, add a routine to compress

and e-mail the log file to you.

• In your user interface, provide your users with a Browse button so that they may

browse to select the company file. This approach is less prone to error than is entering

the company file name and path by typing it in a window field.

• It is always good practice to test your application on a system equivalent to the machine

and system you assess to be most like the target system of your customer. To ensure

that your application is robust, run the application against a complex and large

company data file. Use a target system that has an average amount of memory. Check

your use of queries and filters against the company data file on that system. If the

system thrashes or QuickBooks returns an out-of-memory error, enhance your

application’s use of queries with additional, appropriate filters.

• Your code should always test for the status code, not the status message, since status

messages are more likely to change from one release to the next.

Validating Requests 483

(c) 2013 Intuit Inc. All rights reserved.

Validating Requests

The QuickBooks SDK includes an external Validator tool (qbXMLValidator.exe) that allows

you to validate qbXML documents to ensure that their grammar and syntax adheres to the

requirements of the qbXML specification. Similarly, the QBFC Library contains a Verify

method for IMsgSetRequest, which allows you to verify requests before DoRequests is

called.) The Validator tool is useful during the development cycle, since it helps you isolate

invalid requests before you send them to be processed. The request format is also validated

automatically when the call to ProcessRequest (or, in the case of QBFC, DoRequests) is

made.

If you want more control over validating requests before they are sent to QuickBooks, you

can build your own validator into your application. Be sure to validate your document

before you report any problems to Intuit Developer Support.

Investigating the Problem Thoroughly

In most cases, you will have undergone various processes in attempting to solve your

development problem before you consider contacting IPP Developer Support. However,

here are some troubleshooting strategies to include in your investigation that you might not

have considered. Try these approaches before you contact IPP developer support:

• If you are using qbXML, write out to a file the portion of qbXML that is causing the

problem and check it thoroughly.

• Check the qbsdklog.txt file for additional detailed information pertaining to the

error condition. This file is written to the directory where the QuickBooks executable

file is installed.

• Ensure that you can recreate the problem using the SDKTest program. (The developer

support engineer will want to know that this can be done and perhaps will also want to

recreate the problem to investigate it further.)

Building a Test Case to Make Available to Developer Support

Here are the guidelines to follow in building a test case:

• Create the smallest possible test case that will embody the problem. Let the test case

simply point out the problem.

• Make the test case complete. If it requires the creation of any particular customers,

vendors, accounts, invoices, and so on, create a setup file in addition to the one that

shows the problem.

• Run the test case against one of the standard QuickBooks sample company files, and

make the test case run successfully, if possible.

484 Chapter 35: Tips and Techniques

(c) 2013 Intuit Inc. All rights reserved.

Sending a Test Case and the Log File to Developer Support

If you must contact IPP Developer Support, the developer support engineer will ask you to

build a test case according to the guidelines. See “Building a Test Case to Make Available

to Developer Support” for details. To proceed speedily in solving the problem, have the test

case ready when you contact developer support. Send the test case as qbXML files to

QuickBooks via the SDKTest program. Also send the portion of the log file (qbsdklog.txt)

that pertains to the problem. (You do not have to send the entire qbsdklog.txt file.)

Using the SDKDiag Tool to Support Your User 485

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 36 1

SUPPORTING YOUR USER 1

This chapter suggests ways you can help users troubleshoot and resolve some problems

without contacting technical support. In particular, it deals with ways your application can

respond to error messages when it attempts to open a connection with QuickBooks and

begin a session working on a company file. In many cases, your application can present

windows that help users handle these problems themselves. Additional tips to help users

avoid common pitfalls, which you may want to include in your documentation, are also

outlined here.

Using the SDKDiag Tool to Support Your User

For help with communication problems with QuickBooks, check out the IPP Developer

website for more information and a useful diagnostic tool called qbSDKDiag.

The qbSDKDiag tool turns on the maximum logging capability of QuickBooks and the

SDK, gathers important registry data about QuickBooks, starts QuickBooks, and attempts

to establish a connection with QuickBooks in interactive mode using QBXMLRP and

QBXMLRP2.

Having successfully connected in interactive mode, the user is then asked to enable

unattended access for the diagnostic tool and to close QuickBooks. The diagnostic tool then

attempts to connect with both QBXMLRP and QBXMLRP2 using unattended mode.

Finally, all the log files (qbsdklog.txt, qbinstancefinder.log, qbwin.log, and the diagnostic

log itself) are zipped up for you to email to support personnel at a later time.

Helping Users Troubleshoot and Resolve Problems

The most commonly occurring error conditions not resolvable by your application are

• Version incompatibility between the running version of QuickBooks and the version of

QuickBooks your application requires

• Version incompatibility between the company data file and QuickBooks

In these cases, your application might need to inform the user about the nature of the

problem and recommend an approach to its resolution. Otherwise, the user might wait for

your application to recover from a situation it cannot resolve.

This section describes some of the kinds of problems your application should monitor for

and the responsive actions it should take.

486 Chapter 36: Supporting Your User

(c) 2013 Intuit Inc. All rights reserved.

Multiple Installed Versions of QuickBooks

If multiple versions of QuickBooks are installed, either of the following two cases might

prevail:

• No version of QuickBooks is open.

No problem: In this case, when the user opens your application and your application

attempts to connect to QuickBooks to begin processing, the Request Processor will

locate and successfully launch the correct version of QuickBooks.

• A version of QuickBooks that is incompatible with the application is open.

Problem: In this case, when the user launches your application and your application

calls the BeginSession method to connect to QuickBooks in response to a user action,

your application will receive result code 0x80040404, which indicates that the version

of QuickBooks currently running does not support the QuickBooks SDK.

Response: Your application should present the user with a window informing the user

of the problem and the version of QuickBooks required. The window content should

direct the user to quit the currently open version of QuickBooks and launch the correct

version.

Incompatible Versions: QuickBooks and Company File

Problem: The correct version of QuickBooks is installed and open, but the company data

file specified by the user is incompatible with the current version of QuickBooks. Result

code 0x80040409 is returned, which indicates that the version of QuickBooks currently

running cannot work with the provided data file.

Response: Your application should present the user with a window describing the problem

and direct the user to open the same company file in the correct version of QuickBooks

(which will cause it to be converted to the correct format).

Different Company File Is Already Open

Problem: If the user specifies the name of a company file that is different from the one

already open in QuickBooks, your application will receive an error. QuickBooks returns a

result code of 0x8004040A for the BeginSession method, which indicates that the data file

already open is different from the requested one.

Responses: Your application should present the user with a window describing the problem.

There are two possible resolutions, depending on the intention of the user. The resolution

you recommend depends on your application.

• Response 1: If the user truly wanted to work in the new specified file, you could

recommend that the user close the currently open company file and then repeat the

action or command in your application, specifying the new company file name.

• Response 2: If the user meant to work in the currently open file, your application could

allow the user to omit the company file name and use the currently open company file

Helping Users Troubleshoot and Resolve Problems 487

(c) 2013 Intuit Inc. All rights reserved.

by default. In this case, your application would specify NULL as the company file

name in the BeginSession call. Then it would call GetCurrentCompanyFileName to

obtain the name of the currently open file.

Warn Your Users to Complete Error Recovery
before Upgrading

Use of QuickBooks error recovery features allows you to protect against data loss and data

duplication in the event of an error condition. This features requires that

• The version of QuickBooks that is currently running is the same as the version that was

running when the error occurred (that is, the user has not upgraded QuickBooks).

• The version of your application that is currently running is the same version that was

running when the error occurred (that is, the user has not installed a new version of

your application).

If the user installed a new version of your application and it has the same name as the one

used when the error condition occurred, error recovery is still possible.

The user might consider some problems more serious than others and think it is safer to

replace a down-level version of an application with a new, improved one in the event of a

serious condition such as a crash. It is important to convey to users that they must first start

the installed versions of QuickBooks and your application and allow your application to

restore its own data and the data it has modified in the QuickBooks company file. Then, if

they want to, they can install the new software.

In addition to a window warning users of this requirement, you will probably also want to

include a note in your documentation about this topic.

Versions of Integrated Applications

An integrated application may be revised in between releases of QuickBooks. The name of

the application may also be changed with each new release to differentiate the feature sets

of each successive revision.

If your application changes its name, be aware that it may be represented as multiple

applications in the QuickBooks preferred integrated applications list. Also, should an error

condition exist, users should complete error recovery in one version of the application

before they upgrade to the next version.

Provide a Means for Breaking Out of Error Recovery

It is possible for an application to get locked into a error recovery loop, sending the same

message repeatedly to QuickBooks. This condition might occur, for instance, if an

application sent a request that caused an error condition to occur and in sending the request

again as part of error recovery, the request caused the error condition to occur yet again.

488 Chapter 36: Supporting Your User

(c) 2013 Intuit Inc. All rights reserved.

With each recurrence, QuickBooks would respond with the same error recovery status

response. Though perhaps an uncommon event, when this kind of loop occurs, there is no

way for the user to interrupt the process. Therefore, as a safeguard, it is a good idea to put a

“back door” into your application—a hidden keystroke sequence, perhaps—and inform

your technical support organization about it.

You might also provide support for a control key set—Ctrl+<shift>+1 (for example)—that

allows your user to break out of the loop and recover control of the application. You would

tell your user support organization about this control key set. Your documentation might

also mention it.

Topics to Include in Your Documentation

The following sections suggest topics you may want to include in the documentation to

help users avoid common pitfalls concerning permissions and error recovery.

Permissions Required for Auto-Login

The auto-login option allows your application to integrate and run QuickBooks in

unattended mode. Auto-login without the QuickBooks user interface can be efficient if your

application needs to avoid the costly overhead entailed in updating the user interface

management of lists and messages. For complete details on auto-login, see Chapter 3, “The

Communication Model and Ways of Implementing It.”

You can use the AuthPreferences property and its PutUnattendedModePref method to

specify whether your application needs auto-login (unattended mode) permissions. The

appropriate authorization dialog will be presented to the user the next time your application

calls BeginSession. (Notice that only the QuickBooks administrator can authorize this.)

However, in order for your application to run using the auto-login option, the QuickBooks

administrator must firs define the auto-login user in QuickBooks; see Chapter 3, “The

Communication Model and Ways of Implementing It.” The administrator can specify that

your application run under any user, including the administrator.

QuickBooks User Permissions

The QuickBooks administrator must configure each QuickBooks user that your application

will log in under to have the permissions your application requires. For example, if your

application deals with time sheets and time reports in QuickBooks, the administrator must

grant your user Time Tracking permissions in QuickBooks when the administrator sets up

the name and password for the new user.

Check the QuickBooks documentation to determine what permissions your application

requires. Then, to ensure that things work properly, use the AuthPreferences property and

its methods to prompt the user for the correct permissions. Also, include explicit directions

in your documentation on how to set these permissions and why they are necessary.

Topics to Include in Your Documentation 489

(c) 2013 Intuit Inc. All rights reserved.

Application Access to Personal Data

The QuickBooks administrator must authorize an application to deal with personal data

such as employee social security numbers, any field directly related to an employee’s

salary, and anything related to credit card numbers or bank account numbers. Click the

Integrated Applications icon in QuickBooks, then Company Preferences, then Properties

and be sure the administrator checks the box for allowing the application to access personal

data.

IMPORTANT

The application can use the AuthPreferences property and the
property method PutPersonalDataPref to specify whether this
access is required, optional, or not needed. This will cause the
appropriate authorization dialog to be displayed to the user.

Complete Error Recovery before Upgrading

As described in “Warn Your Users to Complete Error Recovery before Upgrading” (page

487), it is important that you include directions to your users to complete error recovery

within the same version of the application used when the problems occurred. You should

include this information in installation notes to upgrades of your product. If you find it

warranted, you might also include it in your more formal documentation.

490 Chapter 36: Supporting Your User

(c) 2013 Intuit Inc. All rights reserved.

Types of Error Codes 491

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 37 1

MAKING YOUR APPLICATION ROBUST 1

This chapter describes how to create a robust application that responds appropriately to

result codes and status codes received from QuickBooks. It covers the following major

topics:

• Types of error codes: HRESULTs, HTTP errors, status codes

• Log file: using the qbsdklog.txt file to obtain more information on request processing

• Software versions: writing applications that run with all versions of QuickBooks

• Error recovery: dealing with error conditions where normal processing may have been

interrupted

• Synchronization: dealing with status codes that indicate data synchronization problems

between your application and QuickBooks

Types of Error Codes

Your application needs to deal with two main categories of error codes:

• Error codes related to passing messages to and from QuickBooks

• Message set status code, which is a status code for the message as a whole

• Response status for each request sent to QuickBooks (status code, status message, and

status severity)

To help you create an application that integrates successfully with QuickBooks, this chapter

provides some pointers on particular result codes and status codes that are especially

important to monitor. This material is meant to be a starting point for how your application

should handle certain error conditions. Beyond that, of course, are many application-

specific concerns that cannot be anticipated here.

Appendix A for Status Code Information

Appendix A contains relevant error/status codes. It lists the status codes, status messages,

and status severity, which are all returned as attributes in the response message for every

request, and lists the HRESULTs that are returned by the COM API that enables your

application to communicate with QuickBooks. Finally, the appendix lists the HRESULTs

returned by the QBFC COM API, which are very similar to those sent by the qbXML

Request Processor API.

492 Chapter 37: Making Your Application Robust

(c) 2013 Intuit Inc. All rights reserved.

Monitoring HRESULTs and HTTP Errors

Error codes related to communicating with QuickBooks must be monitored and handled

appropriately. The section in this chapter called “Synchronizing Data between Your

Application and Quickbooks” describes a general strategy for implementing an error

recovery routine that is invoked each time your application starts up. The error recovery

routine checks for possible processing problems in the previous session. It is also invoked

whenever certain error codes having to do with processing or communication problems are

generated.

An example of an HRESULT returned by the qbXML Request Processor is:

0x80040416

If QuickBooks is not running, the company data file name must be supplied

to BeginSession.

Monitoring Message Set Status Codes

This status code deals with the message set as a whole and is returned in response to a

status check or clear status. It is also returned if some specific error recovery operation is

invoked and fails, such as a standard check for a valid message set ID.

Monitoring Status Codes

Status codes (and their accompanying status message and status severity) are included in

the response for each request. This chapter provides special sections describing how your

application might deal with status codes related to versioning issues, and with status codes

related to problems in synchronizing company data between your application and

QuickBooks.

An example of a status code is:

<CustomerAddRs requestID=”2” status code=”3231” statusSeverity=”Error”

statusMessage=”The request has not been processed.”/>

Using the Log File 493

(c) 2013 Intuit Inc. All rights reserved.

Using the Log File

When your application integrates with QuickBooks, QuickBooks creates a log file

(qbsdklog.txt) in the Common Files directory. As your application interacts with

QuickBooks, three categories of information are logged:

• Informational entries (I) report on activities, such as events beginning and ending.

• Warning entries (W) provide additional information about troublesome circumstances

that have not stopped processing but should be addressed.

• Error entries (E) report on errors. They can also elaborate on errors returned to your

program through qbXML COM HRESULT codes or status code errors, and messages

returned in the attributes in the response message in the qbXML response text stream.

In some cases, the log file can help you to identify specific problematic fields (elements) in

a request that raised an error. Sometimes the message will refer to a field or element that

borders an area in error. This log information might occur, for instance, if the error occurred

because a required field is missing. Table 37-1 shows an example of a log file.

Table 37-1 Example log file

Date and time Level PID SDK component Event message

20011107.145109 I 1884 RequestProcessor Started Connection

20011107.145109 I 1884 RequestProcessor Connection opened by app named
'SdkTest'

20011107.145109 I 1884 CertVerifier The file does not contain an
Authenticode signature.

20011107.145109 I 1884 RequestProcessor Opening the file in the DoNotCare
mode.

20011107.145120 I 1936 QBSDKProcessRequest Application named 'SdkTest' starting
requests (process 1884).

20011107.145122 I 1936 QBSDKMsgSetHandler QUERY: Invoice

20011107.145128 I 1936 QBSDKMsgSetHandler Request 234578 completed
successfully.

20011107.145128 I 1936 MsgSetHandler Finished.

20011107.145128 I 1936 QBSDKProcessRequest Application named 'SdkTest' finishing
requests (process 1884), ret = 0.

20020219.144648 I 393 SpecVersion Current version of qbXML in use: 3.0

20011107.145129 I 1884 RequestProcessor Connection closed by app named
'SdkTest'

20011107.145129 I 1884 RequestProcessor Ended Connection

494 Chapter 37: Making Your Application Robust

(c) 2013 Intuit Inc. All rights reserved.

Software Versions

The Technical Overview answers frequently asked questions about how to write an

application that supports multiple versions of QuickBooks. See that document for a list of

the different versions of QuickBooks and corresponding versions of the qbXML

specification that are supported by QuickBooks.

Checklist

The following checklist summarizes important tasks your application must address in order

to work with multiple versions of QuickBooks:

1. Handle an error creating the qbXML Request Processor object (for example, an

HRESULT of 0x80040404: The version of QuickBooks currently running does not

support qbXML.).

2. After a session has begun, check the qbXML specification supported by the qbXML

Request Processor object. (See “Checking the QuickBooks Version.”)

3. Reference the appropriate qbXML prolog for that specification. (See “Checking the

QuickBooks Version.”)

4. Guard newer features to prevent their running against an older QuickBooks version. Be

sure to consider both requests and responses. (Note that the prolog applies to all

requests contained within the XML stream. You can’t mix 1.0, 1.1, 2.0, 2.1, and 3.0

requests in one stream.) (See “Dealing with Unsupported Features.”)

Checking the QuickBooks Version

At runtime, your application needs to determine what versions of qbXML are supported by

the version of QuickBooks that is processing your requests. Once it determines the current

version, it should then load the appropriate prolog citing the correct version of the qbXML

specification. (Or, if your application is using QBFC, it should create a message set request

that corresponds to the correct version of the QuickBooks Request Processor.) The

following two code examples (one for qbXML and one for QBFC) illustrate the tasks your

application must complete in order to accommodate any version of QuickBooks that might

be running when your application is launched.

Example 1: qbXML

The following code excerpt contains two functions. The first function

(qbXMLLatestVersion) shows using the HostQuery function to obtain the supported

versions of the QuickBooks Request Processor that are currently running. It then loops

through the versions to determine the highest supported version.

The second function (qbXMLAddProlog) then adds the qbXML prolog that corresponds to

this latest version of the QuickBooks Request Processor.

Software Versions 495

(c) 2013 Intuit Inc. All rights reserved.

Function qbXMLLatestVersion(rp As requestProcessor, ticket As String)

As String

Dim strXMLVersions() As String

'Create a DOM document object for creating our request.

Dim xml As New DOMDocument

'Create the QBXML aggregate

Dim rootElement As IXMLDOMNode

Set rootElement = xml.createElement("QBXML")

xml.appendChild rootElement

'Add the QBXMLMsgsRq aggregate to the QBXML aggregate

Dim QBXMLMsgsRqNode As IXMLDOMNode

Set QBXMLMsgsRqNode = xml.createElement("QBXMLMsgsRq")

rootElement.appendChild QBXMLMsgsRqNode

Dim onErrorAttr As IXMLDOMAttribute

Set onErrorAttr = xml.createAttribute("onError")

onErrorAttr.Text = "stopOnError"

QBXMLMsgsRqNode.Attributes.setNamedItem onErrorAttr

'Add the HostQuery aggregate to QBXMLMsgsRq aggregate

Dim HostQuery As IXMLDOMNode

Set HostQuery = xml.createElement("HostQueryRq")

QBXMLMsgsRqNode.appendChild HostQuery

'Add a lowest-common-denominator prolog'

Dim strXMLRequest As String

strXMLRequest = _

"<?xml version=""1.0"" ?>" & _

"<!DOCTYPE QBXML PUBLIC '-//INTUIT//DTD QBXML QBD 1.0//EN'_

'http://developer.intuit.com'>" _

& rootElement.xml

Dim strXMLResponse As String

strXMLResponse = rp.ProcessRequest(ticket, strXMLRequest)

Dim QueryResponse As New DOMDocument

'Parse the response XML

QueryResponse.async = False

QueryResponse.loadXML (strXMLResponse)

496 Chapter 37: Making Your Application Robust

(c) 2013 Intuit Inc. All rights reserved.

Dim supportedVersions As IXMLDOMNodeList

Set supportedVersions =

QueryResponse.getElementsByTagName("SupportedQBXMLVersion")

Dim VersNode As IXMLDOMNode

Dim i As Long

Dim vers As Double

Dim LastVers As Double

LastVers = 0

For i = 0 To supportedVersions.length - 1

Set VersNode = supportedVersions.Item(i)

vers = VersNode.firstChild.Text

If (vers > LastVers) Then

LastVers = vers

qbXMLLatestVersion = VersNode.firstChild.Text

End If

Next i

End Function

'Get an XML prolog that is appropriate for the latest version of qbXML

Function qbXMLAddProlog(supportedVersion As String, xml As String) As

String

Dim qbXMLVersionSpec As String

If (Val(supportedVersion) >= 2) Then

qbXMLVersionSpec = "<?qbxml version=""" & supportedVersion & """?>"

ElseIf (supportedVersion = "1.1") Then

qbXMLVersionSpec= "<!DOCTYPE QBXML PUBLIC '-//INTUIT//DTD QBXML QBD " _

& supportedVersion & "//EN' 'http://developer.intuit.com'>"

Else

MsgBox "You are apparently running QuickBooks 2002 Release 1, we

strongly recommend that you use QuickBooks' online update feature to obtain

the latest fixes and enhancements", vbExclamation

qbXMLVersionSpec = "<!DOCTYPE QBXML PUBLIC '-//INTUIT//DTD QBXML QBD "

_

& supportedVersion & "//EN' 'http://developer.intuit.com'>"

End If

qbXMLAddProlog = "<?xml version=""1.0""?>" & vbCrLf & qbXMLVersionSpec &

xml

End Function

Example 2: QBFC

This example parallels Example 1 but uses QBFC syntax. The first function

(QBFCLatestVersion) determines the highest version of QuickBooks that is currently

running. The second function (GetLatestMsgSetRequest) creates a message set request for

the current version of QuickBooks.

Function QBFCLatestVersion(SessionManager As QBSessionManager) As String

 Dim strXMLVersions() As String

 Dim msgset As IMsgSetRequest

 'Use oldest version to ensure that we work with any QuickBooks (US)

Software Versions 497

(c) 2013 Intuit Inc. All rights reserved.

 Set msgset = SessionManager.CreateMsgSetRequest(1, 0)

 msgset.AppendHostQueryRq

 Dim QueryResponse As QBFC2Lib.IMsgSetResponse

 Set QueryResponse = SessionManager.DoRequests(msgset)

 Dim response As QBFC2Lib.IResponse

 ' The response list contains only one response,

 ' which corresponds to our single HostQuery request

 Set response = QueryResponse.ResponseList.GetAt(0)

 Dim HostResponse As IHostRet

 Set HostResponse = response.Detail

 Dim supportedVersions As IBSTRList

 Set supportedVersions = HostResponse.SupportedQBXMLVersionList

 Dim i As Long

 Dim vers As Double

 Dim LastVers As Double

 LastVers = 0

 For i = 0 To supportedVersions.Count - 1

 vers = Val(supportedVersions.GetAt(i))

 If (vers > LastVers) Then

 LastVers = vers

 QBFCLatestVersion = supportedVersions.GetAt(i)

 End If

 Next i

End Function

'QBFC: Get a MsgSetRequest that supports the latest possible version 'of qbXML

Public Function GetLatestMsgSetRequest(SessionManager As QBSessionManager) As IMsgSetRequest

Dim supportedVersion as String

supportedVersion = QBFCLatestVersion(SessionManager)

If (Val(supportedVersion) >= 3) Then

Set GetLatestMsgSetRequest = SessionManager.CreateMsgSetRequest("US", 3, 0)

addr4supported = True

ElseIf (Val(supportedVersion) >= 2) Then

Set GetLatestMsgSetRequest = SessionManager.CreateMsgSetRequest("US", 2, 0)

addr4supported = True

ElseIf (Val(supportedVersion) = 1.1) Then

Set GetLatestMsgSetRequest = SessionManager.CreateMsgSetRequest("US", 1, 1)

Else

MsgBox "You are apparently running QuickBooks 2002 Release 1, we strongly recommend

that you use QuickBooks' online update feature to obtain the latest fixes and

enhancements", vbExclamation

Set GetLatestMsgSetRequest = SessionManager.CreateMsgSetRequest("US", 1, 0)

End If

498 Chapter 37: Making Your Application Robust

(c) 2013 Intuit Inc. All rights reserved.

Dealing with Unsupported Features

If your application takes advantage of features added in later versions of QuickBooks that

are unsupported in earlier versions (for example, transaction Modify requests), it needs to

control what will happen when it is running against one of the earlier versions of

QuickBooks that does not contain the later functionality.

Branching When Versions Differ

The following QBFC function is an example of a useful way to test for support of a

particular version and then branch according to the version support currently available. For

example, you could place this function at the beginning of the application and then check

the Boolean value set by the function when support for Version 2.0 is required. The

CustomerAdd example included in the QuickBooks SDK uses this function to check

whether Version 2.0 is supported. If it is, the application sets the value for Addr4 (a 2.0

feature). If not, it does not set the Addr4 value.

Dim booSupports2dot0 as boolean

booSupports2dot0 = False

Dim supportedVersion As String

supportedVersion = QBFCLatestVersion(SessionManager)

If (val(supportedVersion) >= 2.0) Then

booSupports2dot0 = True

Set requestSet = SessionManager.CreateMsgSetRequest("US",3,0)

End If

Alerting the User of Version Issues

If your application requires use of a new feature, it should display an appropriate error

message and deal gracefully with earlier versions of QuickBooks that do not contain the

feature. The following qbXML example shows checking the version and exiting when

appropriate QuickBooks support is unavailable.

Dim supportedVersion As String

supportedVersion = qbXMLLatestVersion(qbXMLRP, ticket)

If (val(supportedVersion) < 2.0) Then

MsgBox "This sample requires support for qbXML 2.0 or later (QuickBooks

2003 or later) " & _

"Expect a parsing error when attempting to send requests to QuickBooks",

_

vbExclamation

End If

In most cases, an actual application would not need to take the drastic measure of exiting; it

would deal gracefully with the version issues and alert the user that it cannot integrate

successfully with QuickBooks.

Error Recovery 499

(c) 2013 Intuit Inc. All rights reserved.

Error Recovery

An important feature of every robust application is error recovery. Details on implementing

error recovery are provided in Chapter 31, “Error Recovery.”

Synchronizing Data between Your Application and Quickbooks

If your application maintains a database or internal file that stores portions of data from the

QuickBooks company file, the application needs to ensure that the two sets of data are

synchronized with each other. Event notification, described in Chapter 14, “Event

Notification,” is a useful way to maintain synchronization.

There are two main actions that lead to a lack of synchronization:

• The user restored the QuickBooks company file to an earlier version.

• The user pruned the company file, removing obsolete data and, possibly, data in the

QuickBooks company file that had been modified by your application.

In the first case, your application might need to update the QuickBooks version of the

company file to reflect the changes made by your application to that data. Before you

update the QuickBooks file, be sure to query the user and obtain his or her approval.

In the second case, your application would need to update its own database to reflect the

changes made in the QuickBooks company file.

Monitor Status Codes

The following status codes indicate a problem with data synchronization. Your application

also needs to check for these status codes and take appropriate action if it receives them.

> 3120 Object not found. Object <value> specified in the

request cannot be found.

Your application attempted to modify an object that it previously added to

QuickBooks or that it obtained using a Query request, and the application

received an error stating that the object doesn’t exist. At this point, your

application might enter its synchronization routine to attempt to determine

whether the object was intentionally deleted by the user or whether the

company file was restored.

> 3140 Reference not found or

3130 Parent reference not found

If your application received one of these messages and it had previously

referenced the object successfully, there is the possibility that the object was

intentionally deleted or that the company file was restored. Your application

would need to take some action to ensure that the error condition didn’t occur

again because the referenced object no longer exists.

> 3240 Time creation mismatch. File has been restored.

500 Chapter 37: Making Your Application Robust

(c) 2013 Intuit Inc. All rights reserved.

If the company file was restored, your application could receive this

message, for example, after issuing a modify request for an object that it

previously added, specifying the ListID assigned to the object and returned

by QuickBooks. Because the user restored a version the company file that

pre-dates addition of the object, the ListID (and the object it pertains to) do

not exist. This message unambiguously indicates that the user restored the

company file. Your application needs to take appropriate action to re-sync its

data with QuickBooks.

Example of Synchronizing Data with QuickBooks

The following example outlines a useful procedure for keeping data in sync, based on the

following requests:

• CompanyActivityQueryRq, which returns the date and time of the most recent restore

of the QuickBooks company file

• The FromModifiedDate field of any list or transaction request, which returns the

elements that have been added or modified

• The FromDeletedDate of the ListDeletedQueryRq or TxnDeletedQueryRq, which

returns the elements that have been deleted.

Figure 37-1 summarizes the steps involved in this synchronization process.

Suppose an application requires a list of active customers and needs to keep this list in sync

with the list contained in the QuickBooks company file. The application uses the ListID as

the primary key of the customer records because the ListID, unlike the FullName, is

guaranteed not to change.

The first time the application connects to QuickBooks, it needs to obtain the entire active

customer list. Listing 37-1 shows this request. Immediately before this request, the

application needs to obtain and record the date and time of this action. In this example, this

date/time is referred to as the “last sync datetime.”

Synchronizing Data between Your Application and Quickbooks 501

(c) 2013 Intuit Inc. All rights reserved.

502 Chapter 37: Making Your Application Robust

(c) 2013 Intuit Inc. All rights reserved.

Figure 37-1 Steps for synchronizing application data with QuickBooks data

_____ Listing 37-1 Obtaining the list of active customers

<CustomerQueryRq requestID = "UUIDTYPE">

<ActiveStatus>ActiveOnly</ActiveStatus>

</CustomerQueryRq>

(Since the default ActiveStatus value is Active Only, that field could actually have been

omitted from Listing 37-1.)

Periodically, the application needs to re-sync its data with QuickBooks. To do so, it first

issues a Company ActivityQueryRq to obtain the LastRestoreTime:

• If the LastRestoreTime is more recent than the “last sync datetime,” then the

application should refresh the entire cached list by querying for the entire list of active

customers.

• If the LastRestoreTime is less recent than the “last sync datetime,” then the application

should issue a request set with two requests to filter for the customers that have been

added, modified, or deleted. Listing 37-2 shows an example of this request. Before

sending this request, the application needs to obtain and record the date and time of the

new “last sync datetime.”

_____ Listing 37-2 Checking for customers that have been added, modified, or deleted

CustomerQueryRq requestID = "1">

<ActiveStatus>All</ActiveStatus>

<FromModifiedDate> last sync datetime</FromModifiedDate>

</CustomerQueryRq>

<ListDeletedQueryRq requestID = "2">

<ListDelType>Customer</ListDelType>

<DeletedDateRangeFilter>

<FromDeletedDate> last sync datetime </FromDeletedDate>

</DeletedDateRangeFilter>

</ListDeletedQueryRq>

Based on the CustomerQuery response, the application needs to add or refresh existing

customer records, matching ListIDs from the response to the cached list. Note that the

response also contains the Inactive customers so that the customers that have changed status

from Active to Inactive can be taken out of the list. The Inactive customers that are returned

and not found in the cached list should be ignored, since the sample shows keeping the

active customer list in sync. Next, based on the ListDeletedQuery response, the application

needs to remove customer records that are no longer necessary.

Synchronizing Data between Your Application and Quickbooks 503

(c) 2013 Intuit Inc. All rights reserved.

Three-Month Limit for ListDeletedQueryRq

There are a few considerations and limitations to the synchronization process described

above. Be aware that ListDeletedQueryRq returns only elements deleted for the previous

three months. If the most recent re-sync happened more than three months ago, a full

synchronization is necessary.

Modification Time

Unlike single-user mode, in multi-user mode, the QuickBooks recorded modification time

is the time of the system where the data file resides, not the time of the system where

QuickBooks is running. The clocks on these two systems (that is, the clock on the system

where the data file resides and the clock on the system that runs the QuickBooks executable

file and runs the SDK requests) may be out of sync. To account for such differences, it is

strongly recommended that you expand the query time range and move the “last sync

datetime” a few hours in the past. The application needs to be prepared to deal with

response duplicates that have already been taken into account in the previous sync as a

result of this time overlap.

Cases Needing Complete Re-Sync

Depending on what data you want to keep in sync, you may need to re-fetch the entire list

every time you want to re-sync because the list of list objects or transactions that have been

modified since the given “last sync datetime” is not accurate. Examples are:

• Account balances are changed by different transactions, but these transactions don’t

result in marking the affected account as modified at the time the transaction occurred.

• Quantity on hand for inventory items: Merging two inventory items modifies the

quantity on hand for the remaining item, but the item doesn’t get marked as modified at

the time of the merge. Transactions can also modify the quantity on hand, but the

affected items are not marked as modified at the time of the transaction.

• Transaction line items: Merging two items causes changes to all the existing transaction

line items to refer to the remaining item of the merge. However, the transactions are not

marked modified at the time of the merge.

Check with the User

Your application should always interact with the user before modifying the QuickBooks

version of the company file as a result of synchronization problems. How you do this is

application-dependent.

504 Chapter 37: Making Your Application Robust

(c) 2013 Intuit Inc. All rights reserved.

If your application ascertains that the QuickBooks company file has been restored, then you

might want to prompt the user further to inquire whether the user would like you to update

the company file in QuickBooks to reflect the more recent changes stored in your

application’s database.This interaction lets the user know about new information that might

otherwise be confusing.

For instance, you might present a window that includes a question similar to this one:

Do you want to reinstate the changes made to the company file by

this application before you restored it?

If the user answers yes, your application can update the QuickBooks company file to

synchronize with its data.

Using the Installers and Merge Modules 505

(c) 2013 Intuit Inc. All rights reserved.

CHAPTER 38 1

REDISTRIBUTING SDK COMPONENTS WITH YOUR APPLICATION 1

The QuickBooks SDK provides optional redistributable components for your application to

distribute, either as separate installers or as merge modules that can be run within your own

application install. These are optional because you need only to distribute the component

that your application actually uses, for example, if you are using only QBFC you

redistribute the QBFC component, not any of the others.

Any of the installers or merge modules within the QB SDK install subdirectory

tools\Installers or tools\MergeModules can be redistributed. Currently these include QBFC,

RDS, the QBO connector, and the web connector.

IMPORTANT

You can never redistribute the request processor DLL
(qbxmlrp.dll or qbxmlrp2.dll). This violates the license
agreement and can lead to undesirable user experiences.

Using the Installers and Merge Modules

If you are using the QBFC API, the Remote Data Sharing (RDS) feature, the QBO

connector or the web connector in your application, there are only two supported ways in

which you can distribute our redistributable components:

1. You can use the stand-alone compressed-image installers that we provide.

2. You can use the merge modules that we provide.

NOTE

It is a violation of your qbXML license agreement to
redistribute QBFC, RDS, the QBO connector, or the web
connector without using either our stand-alone installers or
our merge modules.

Do not use automatic installation programs and packaging wizards, such as the wizard in

Microsoft® Visual Studio®. These will not install properly (even if you are using .NET), for

the following reasons:

• Automatic solutions will redistribute the qbxmlrp.dll file. Redistributing this file is

against your license agreement, and could also cause significant problems for your end

users.

• Automatic solutions will redistribute the QBFC DLL file or files, but not the Xerces

files that must go with them.

506 Chapter 38: Redistributing SDK Components With Your Application

(c) 2013 Intuit Inc. All rights reserved.

IMPORTANT

The QBFC library requires the Microsoft system DLL
ShFolder.dll to be installed on the system. Newer Microsoft
operating systems (Windows ME, Windows XP, etc.) have this
DLL pre-installed. This DLL is installed if needed by
QuickBooks and by the QBFC stand-alone installer using the
SHFolder.exe redistributable installer from Microsoft. If you
plan to use the QBFC merge module in your installer and you
want your application to work with RDS (where QuickBooks
may not be installed on the machine where your application is
installed) then your installer must include and execute the
SHFolder.exe installer from Microsoft. Technical issues prevent
us from including this action in the QBFC merge module itself.

Using the Stand-Alone Installers

If your install process does not support merge modules, you will need to use the stand-alone

installers provided with the SDK. These installers will automatically perform a proper

installation.

To install the QBFC Library on your end-users’ machines:

• Distribute the QBFC installer, QBFC*_0Installer.exe, located in the

SDK install subdirectory /tools/installers. (Merge modules are in the SDK install

subdirectory /tools/MergeModules.)

• Call the installer. Exactly how you call it depends on the underlying technology you are

using to drive your installation.

QBFC1, QBFC2, QBFC2CA, QBFC2_1, QBFC3, QBFC4, and QBFC5 can be installed

side-by-side on the same computer. The stand-alone installer for QBFC4 will install

QBFC4 and QBXMLRP2. (For more information about QBXMLRP2, see the Technical

Overview.)

Using the Merge Modules

If your install process supports Microsoft merge modules, you can use the merge modules

that are provided.

What Is a Merge Module?

The Microsoft Installer (MSI) service is built into Windows 2000 and XP. MSI solves a

number of installation problems, such as getting clean uninstalls and protecting system

components, and includes redistributable install engines that support Win98, WinNT, and

Win ME. To get a “Designed for Windows” logo, your application must be installed using

MSI.

Using the Installers and Merge Modules 507

(c) 2013 Intuit Inc. All rights reserved.

“Merge modules” are a key part of MSI. They encode the logic and files needed to correctly

redistribute shared components, which aren’t removed from a system until all of the

applications that installed them are removed.

Any installation that is built for an MSI-engine installer can use merge modules. Many

proprietary install tools that are not strictly based on MSI (for example, newer versions of

InstallShield Professional) can also take advantage of merge modules.

How Do I Use a Merge Module from the SDK?

The SDK merge modules are located in the /tools/MergeModules folder. Here’s how to use

them:

1. Make sure you have the Microsoft VC (VC_CRT.msm) and VC++ (VC_STL.msm)

runtime library merge modules, which are required because the SDK merge modules

install components that depend on the Visual C and C++ version 7 runtime libraries.

These Microsoft merge modules are included with most MSI-based install builders, or

you can get them directly from Microsoft. When the VC_CRT.msm and VC_STL.msm

modules are added to the installer, the install author is responsible for configuring them

to set their target directory to the windows system directory.

2. Set your installation development tool to include the SDK MergeModules directory in

the MergeModule search path.

3. Each MSI “feature” refers to components and/or merge modules. For any feature that

installs components of your application that depend on the SDK capabilities provided

by a merge module, specify that particular merge module as part of that feature.

If a merge module is dependent on some other module, the other module will be added

to your installer automatically. (For example, the various versions of the QBFC merge

modules depend on various versions of Xerces, which are packaged in separate merge

modules: the correct one is automatically added to the installation.)

4. Build your installation as usual. All the logic from the included merge modules will be

merged into your install.

What Installation Logic Is Built Into the Provided Merge Modules?

The QBFC merge modules provide QBFC DLL files and COM registration information for

QBFC. The QBFC merge modules depend on the Xerces XML parser module and on the

QBXMLRP2 merge module—in other words, installing QBFC installs the Xerces files and

QBXMLRP2.

508 Chapter 38: Redistributing SDK Components With Your Application

(c) 2013 Intuit Inc. All rights reserved.

Status Code Ranges 509

(c) 2013 Intuit Inc. All rights reserved.

APPENDIX A 1

STATUS CODES FOR qbXML RESPONSES 1

This appendix lists the status codes returned in the qbXML statusCode attribute. This

information is used by developers using qbXML for applications integrating with either

QuickBooks, QuickBooks Canada, and QuickBooks UK.

Table A-1 shows the status code ranges and identifies their types.

Table A-2 lists the status code, gives its meaning, and explains the condition that the code

represents.

Table A-1 Ranges of status codes and levels of severity

Status Code Range
General Meaning of Codes in
Range

0–499 Info

500–999 Warnings

1000–1999 General Errors

2000–2999 Not Supported for QuickBooks.

3000 and beyond Specific Errors

510 Appendix A: Status Codes for qbXML Responses

(c) 2013 Intuit Inc. All rights reserved.

Table A-2 Status codes and conditions under which they appear

Code Meaning Explanation

0

The QuickBooks server

processed the request

successfully.

Status OK

1 No match.
A query request did not find a matching

object in QuickBooks.

500
One or more objects cannot be

found

The query request has not been fully

completed. There was a required element

(“fieldValue”) that could not be found in

QuickBooks.

501
Object not in this qbXML

specification

Unable to represent objectName

“fieldValue” in this version of the qbXML

spec.

510 Object cannot be returned Unable to return object.

530 Unsupported field
The field “fieldName” is not supported by

this implementation.

531 Unsupported enum value

The enum value “fieldValue” in the field

“fieldName” is not supported by this

implementation.

550 Unable to save notes

The “objectName” object was saved

successfully, but its corresponding Notes

record could not be saved.

560 Deprecated field used.

Use of this field is no longer

recommended. Although it is currently

supported, it may be removed from a

future release.

570 Cannot link to transaction
Unable to link to transaction “fieldValue”

because it has already been closed.

600 No cleared state to return
(For error recovery; no message is

returned.)

1000 Internal error
There has been an internal error when

processing the request.

1010 System not available System not available

1030 Unsupported message
This request is not supported by this

implementation.

1060 Invalid request ID
The request ID “fieldValue” is invalid,

possibly too long, max 50 chars.

2000 Authentication failed
Signon failed. QuickBooks error message:

fieldValue

2010 Access not authorized Not authorized to access the server.

3000 Invalid object ID
The given object ID “fieldValue” in the

field “fieldName” is invalid.

3010 Invalid Boolean

There was an error when converting the

boolean value “fieldValue” in the field

“fieldName”

Status Codes and Meanings 511

(c) 2013 Intuit Inc. All rights reserved.

3020 Invalid date

There was an error when converting the

date value “fieldValue” in the field

“fieldName”

3030 Invalid date range
Invalid date range: From date is greater

than To date.

3031 Invalid string range
The “From” or “To” values in the provided

fieldName are invalid.

3035 Invalid time interval

There was an error when converting the

time interval “fieldValue” in the field

“fieldName”

3040 Invalid amount

There was an error when converting the

amount “fieldValue” in the field

“fieldName”

3045 Invalid price
There was an error when converting the

price “fieldValue” in the field “fieldName”

3050 Invalid percentage

There was an error when converting the

percent “fieldValue” in the field

“fieldName”

3060 Invalid quantity

There was an error when converting the

quantity “fieldValue” in the field

“fieldName”

3065 Invalid value for GUIDTYPE
There was an error when converting the

GUID value XXX in the field “fieldName”

3070 String too long
The string “fieldValue” in the field

“fieldName” is too long.

3080 Invalid string The string “fieldValue” is invalid.

3085 Invalid number

There was an error when converting the

number “fieldValue” in the field

“fieldName”

3090 Invalid object name
There was an error when storing

“fieldValue” in the “fieldName” field.

3100 Name is not unique
The name “fieldValue” of the list element

is already in use.

3101 Resulting amount too large

Multiplying the rate and the quantity

results in an amount that exceeds the

maximum allowable amount.

3110 Invalid enum value

The enumerated value “fieldValue” in the

field “fieldName” is unknown or invalid for

the qbXML version in use.

3120 Object not found
Object “fieldValue” specified in the

request cannot be found.

3121 OwnerID not found

Data Extension Definitions specified by

OwnerID fieldValue not found for this

object type.

Table A-2 Status codes and conditions under which they appear (continued)

Code Meaning Explanation

512 Appendix A: Status Codes for qbXML Responses

(c) 2013 Intuit Inc. All rights reserved.

3130 Parent reference not found
There is an invalid reference to a parent

“fieldValue” in the objectName list.

3140 Reference not found

There is an invalid reference to

QuickBooks fieldName “fieldValue” in the

objectName.

3150 Missing required element There is a missing element “fieldName.”

3151 Invalid element for request
Cannot use the element “fieldName” in

this request.

3152
Invalid enum value for this

request

The enumerated value “fieldValue” may

not be used in the element “fieldName” in

this request.

3153 Element conflict in request

This error is returned whenever there is a

conflict in the elements in the request.

Each element has valid value, but their

combination becomes invalid.

3160 Object cannot be deleted
Cannot delete the object specified by the

id = “fieldValue.”

3161
Cannot delete before closing

date

An attempt was made to delete a

fieldValue with a date that is on or before

the closing date of the company. If you

are sure you really want to do this, please

ask a user with Admin privileges to

remove the password for editing

transactions on or before to closing date

(this setting is in the Accounting

Company Preferences), then try again.

3162 Not allowed in multi-user mode
This operation is not allowed in multi-user

mode.

3170 Object cannot be modified
There was an error when modifying a

fieldValue.

3171
Cannot modify before closing

date

An attempt was made to modify a

fieldValue with a date that is on or before

the closing date of the company. If you

are sure you really want to do this, please

ask a user with Admin privileges to

remove the password for editing

transactions on or before to closing date

(this setting is in the Accounting

Company Preferences), then try again.

3172
Cannot modify prior to last

condense

An attempt was made to modify a

fieldValue with a date that is on or before

the last inventory condensed date.

3173
Related object deleted or

modified

The related fieldName transaction object

fieldValue was deleted or modified.

Table A-2 Status codes and conditions under which they appear (continued)

Code Meaning Explanation

Status Codes and Meanings 513

(c) 2013 Intuit Inc. All rights reserved.

3175 Object is in use

There was an error adding, modifying or

deleting fieldValue because it is already in

use.

3176

A related “object_type/

transaction” is already in use,

or failed to acquire the lock for

this object.

This error occurs if an object is already in

use or if QuickBooks is in a mode that

prohibits any data modification requests.

(In QuickBooks, certain features are

“single-user” features, which lock out

other add and modify requests. An

example of a single-user feature is

opening the “Adjust Quantity/Value on

Hand” window within QuickBooks.)

3177 Duplicate AppliedToTxn IDs
The transaction object “fieldValue” may

only be provided once in this request.

3180 Object cannot be added
There was an error when saving a

fieldValue.

3185 Object cannot be voided
Cannot void the object specified by the id

= “fieldValue”

3190 Cannot clear required element
Cannot clear the element in the

fieldName field.

3200 Outdated edit sequence
The provided edit sequence “fieldValue” is

out-of-date.

3205 Invalid address
There was an error when composing an

address in “fieldValue”

3210 Other validation error
The “fieldName” field has an invalid value

“fieldValue”

3220
Not authorized to perform this

operation

There is no permission to perform this

request, or the feature has been turned

off in QuickBooks

3230 Status rollback The request has been rolled-back.

3231 Status unprocessed The request has not been processed.

3240 Time creation mismatch
Object "fieldValue" specified in the

request cannot be found.

3250 Feature not enabled
This feature is not enabled or not

available in this version of QuickBooks.

3260 Insufficient permissions
Insufficient permission level to perform

this action.

3261
Application has no sensitive

data permission

The integrated application has no

permission to access sensitive data.

3262 Requires payroll subscription

In order to complete this request, the

company data file has to be subscribed to

the Intuit Payroll Service.

Table A-2 Status codes and conditions under which they appear (continued)

Code Meaning Explanation

514 Appendix A: Status Codes for qbXML Responses

(c) 2013 Intuit Inc. All rights reserved.

3263 Not authorized for write access.

This request cannot be completed

because the integrated application had

requested read-only access. Have the

integrated application request read/write

access, and have the QuickBooks

administrator grant this access.

3270 Missing posting account Missing posting account.

3280 Item type mismatch

The item “fieldValue” cannot be used in

this line item. It does not have a correct

type.

3290 Item line out of order
The item lines in the request cannot be

reordered.

3300
Could not open the window or

form

Could not open the requested

“formname” form or window

3301
Not allowed in unattended

mode

Cannot perform this request unless an

interactive QuickBooks user is logged in.

3310
Failed to save the Time

Tracking transaction.

The employee “fieldName” provided in

the TimeTrackingAdd request has the

checkbox “Use time data to create

paychecks” set to the Unknown state.

Have your application ask the user

whether or not to set time tracking for

this employee. Then issue an

EmployeeMod request to set this option

to either UseTimeData or

DoNotUseTimeData. If UseTimeData,

activities will be transferred to paychecks.

3320 Could not create report
The required report could not be

generated.

3330 GUID used in request is invalid
Cannot use the value XXX in the

“fieldname” field in this request.

3340

This request cannot be

processed from within a data

event callback procedure

This request cannot be processed from

within a data event callback procedure.

3350 Custom field list is full

Unable to define a new public data

extension; the list of public extension

definitions is full.

3351 Invalid type for custom field

The value or values provided for

AssignToObject or RemoveFromObject

may not be used for public data extension

requests.

3352
Previously defined custom field

definition can’t be reused

The data extension named XXX was

previously defined with a different,

incompatible AssignToObject. Unable to

use the AssignedToObject type in this

request.

Table A-2 Status codes and conditions under which they appear (continued)

Code Meaning Explanation

Status Codes and Meanings 515

(c) 2013 Intuit Inc. All rights reserved.

HRESULTS from qbXML COM Methods

The qbXML COM methods return an HRESULT value. If the HRESULT variable does not

specify S_OK on return, then one of the result codes listed in Table A-1 is returned. These

result codes report several kinds of errors: connection, parsing, or file I/O errors.

NOTENOTE

The QuickBooks qbXML COM interface supports the IErrorInfo
interface, which allows you to obtain further information on
error codes.

3360
Callback application cannot be

found

The callback application cannot be found

from the CLSID or ProgID provided in the

subscription request.

9000
Host processing request. Try

later.

(For error recovery; no message is

returned.)

9001 Invalid checksum
(For error recovery; no message is

returned.)

9002 No stored response found
(For error recovery; no message is

returned.)

9003 Reinitialization problem
(For error recovery; no message is

returned.)

9004 Invalid message ID
(For error recovery; no message is

returned.)

9005 Unable to store response.
The error recovery message cannot be

saved.

9100 Macro name not unique
The macro name “fieldValue” is already in

use; it may only be defined once.

9101 Macro name too long The macro name “fieldValue” is too long.

9102 Macro name invalid
The macro name “fieldValue” contains

invalid characters.

9103 Macro substitution failure

The request was unable to use a macro

value, probably due to an earlier error

encountered when defining the macro.

HRESULT error code Message

0x80040400 QuickBooks found an error when parsing the provided XML text stream.

0x80040401 Could not access QuickBooks (Failure in attempt to connection).

0x80040402 Unexpected error. Check the qbsdklog.txt file for possible additional
information.

0x80040403 Could not open the specified QuickBooks company data file.

0x80040404 The version of QuickBooks currently running does not support qbXML.

0x80040405 qbXML components have not been installed.

Table A-2 Status codes and conditions under which they appear (continued)

Code Meaning Explanation

516 Appendix A: Status Codes for qbXML Responses

(c) 2013 Intuit Inc. All rights reserved.

0x80040406 Could not determine the version of the QuickBooks company data file, or the
data file has been modified and requires a newer version of QuickBooks.

0x80040407 The installation of QuickBooks appears to be incomplete. Please reinstall
QuickBooks.

0x80040408 Could not start QuickBooks.

0x80040409 The current version of QuickBooks cannot work with the specified company
data file.

0x8004040A QuickBooks company data file is already open and it is different from the one
requested.

0x8004040B Could not get the name of the current QuickBooks company data file.

0x8004040C BeginSession method has not been called or it did not succeed.

0x8004040D The ticket parameter is invalid.

0x8004040E There is not enough memory to complete the request.

0x8004040F The OpenConnection method has not been called.

0x80040410 The QuickBooks company data file is currently open in a mode other than the
one specified by your application.

0x80040411 Before calling the BeginSession method, you must call the EndSession
method to terminate the current session.

0x80040412 You cannot make multiple successive calls to the OpenConnection method.
Call CloseConnection before calling OpenConnection again.

0x80040413 QuickBooks does not support the rollbackOnError value of the onError
attribute.

0x80040414 A modal dialog box is showing in the QuickBooks user interface. Your
application cannot access QuickBooks until the user dismisses the dialog box.

0x80040415 A call to the OpenConnection method must include the name of your
application.

0x80040416 If QuickBooks is not running, a call to the BeginSession method must include
the name of the QuickBooks company data file.

0x80040417 If the QuickBooks company data file is not open, a call to the BeginSession
method must include the name of the data file.

0x80040418 This application has not accessed this QuickBooks company data file before.
Only the QuickBooks administrator can grant an application permission to
access a QuickBooks company data file for the first time.

0x80040419 This application’s certificate is invalid. An application must have a valid
certificate to access QuickBooks company data files.

0x8004041A This application does not have permission to access this QuickBooks
company data file. The QuickBooks administrator can grant access
permission through the Integrated Application preferences.

0x8004041B Unable to lock the necessary information to allow this application to access
this company data file. Try again later.

0x8004041C An internal QuickBooks error occurred while trying to access the QuickBooks
company data file.

0x8004041D This application is not allowed to log into this QuickBooks company data file
automatically. The QuickBooks administrator can grant permission for
automatic login through the Integrated Application preferences.

HRESULT error code Message

Status Codes and Meanings 517

(c) 2013 Intuit Inc. All rights reserved.

0x8004041E This application’s certificate is expired. If you want to allow the application to
log into QuickBooks automatically, log into QuickBooks and try again. Then
click Allow Always when you are notified that the certificate has expired.

0x8004041F QuickBooks Basic cannot accept XML requests. Another product in the
QuickBooks line, such as QuickBooks Pro or Premier, 2002 or later, is
required.

0x80040420 The QuickBooks user has denied access.

0x80040421 The returned text is passed via the qbXML COM Request Processor directly
from QuickBooks to your application and is not issued by the qbXML COM
Request Processor itself. You may find it useful to copy the text verbatim to
your message window.

0x80040422 This application requires Single User file access mode and there is already
another application sharing data with this QuickBooks company data file.

0x80040423 The version of qbXML that was requested is not supported or is unknown.

0x80040424 QuickBooks did not finish its initialization. Please try again later.

0x80040425 Invalid parameter.

0x80040426 Scripts are not allowed to call QBXMLRP.

0x80040427 The QuickBooks application needs to be registered.

0x80040428 The version of QBXML that was requested is not supported by this version of
the QBXMLRP library.

0x80040429 The message set requested cannot be processed through the API that was
called.

0x8004042A This call may not be made from a remote system.

0x8004042B Unsupported interface.

0x8004042C Certificate has been revoked.

0x8004042D QuickBooks did not finish opening the data file while launching its UI, and we
decided to give up. Perhaps the user did not complete the QuickBooks login
process.

0x8004042E This call cannot be made after calling "BeginSession" and before calling
"EndSession".

0x8004042F The requested connection type could not be found.

HRESULT error code Message

518 Appendix A: Status Codes for qbXML Responses

(c) 2013 Intuit Inc. All rights reserved.

Objects/Operations Supported by Desktop Editions 519

(c) 2013 Intuit Inc. All rights reserved.

APPENDIX B 1

QUICKBOOKS DATA ACCESSIBLE VIA SDK OBJECTS/OPERATIONS 1

This appendix lists the operations and queries that are supported by the various editions of

QuickBooks. It also lists some limitations that are in effect for some of these operations.

Objects/Operations Supported by Desktop Editions

The following table lists the objects/operations supported by desktop editions, excluding

Simple Start, which is listed later in this appendix.

Table B-1 Supported QB objects/ops for desktop versions

Object Type Query Add Modify Delete Void

Account List yes yes yes yes no

AgingReport Report yes no no no no

ARRefundCreditCard

(not Canada/UK

Txn yes yes no yes yes

Bill Txn yes yes yes yes yes

Bill payment check Txn yes yes yes yes yes

Bill payment credit

card

Txn yes yes yes yes yes

Bill to pay Txn yes no no no no

BillingRate List yes yes no yes no

BudgetSummary-

Report

Report yes no no no no

BuildAssembly (not

Canada/UK

Txn yes yes yes yes yes

Charge Txn yes yes yes yes yes

Check Txn yes yes no yes yes

Class List yes yes yes yes no

Company Special yes no no no no

CompanyActivity Special yes no no no no

Credit card charge Txn yes yes yes yes yes

Credit card credit Txn yes yes yes yes yes

Credit memo Txn yes yes yes yes yes

Currency List yes yes yes yes no

CustomDetailReport Report yes no no no no

Customer List yes yes yes yes no

Customer message List yes yes no yes no

520 Appendix B: QuickBooks Data Accessible Via SDK Objects/Operations

(c) 2013 Intuit Inc. All rights reserved.

Customer type List yes yes no yes no

CustomSummary-

Report

Report yes no no no no

DataEventRecovery-

Info

Event

Notif.

yes no no yes no

DataEventSubscrip-

tion

Event

Notif.

yes yes no yes no

DataExt Special no yes yes yes no

DataExtDef Special yes yes yes yes no

Date-driven terms List yes yes no yes no

Deposit Txn yes yes yes yes yes

Discount item List yes yes yes yes no

Employee List yes yes yes yes no

Entity List yes no no no no

Estimate Txn yes yes yes yes no

Fixed asset item List yes yes yes yes no

GeneralDetailReport Report yes no no no no

GeneraSumaryReport Report yes no no no no

Group item List yes yes yes yes no

Host application Special yes no no no no

Inventory adjustment Txn yes yes no yes no

Inventory assembly

item

List yes yes yes yes no

Inventory item List yes yes yes yes no

Invoice Txn yes yes yes yes yes

Item List yes no no no no

Item Receipt Txn yes yes yes yes yes

Job type List yes yes no yes no

JobReport Report yes no no no no

Journal entry Txn yes yes yes yes yes

ListDisplay UI

Integra-

tion

no yes yes no no

Non-inventory item List yes yes yes yes no

Non-wage payroll item
(see Note at end of table)

List yes no no no no

Other charge item List yes yes yes yes no

Other name List yes yes yes yes no

Payment item List yes yes yes yes no

Payment method List yes yes no yes no

PayrollDetailReport

(See Note below)

Report yes no no no no

Object Type Query Add Modify Delete Void

Objects/Operations Supported by Desktop Editions 521

(c) 2013 Intuit Inc. All rights reserved.

PayrollSummary

Report (See Note below)

Report yes no no no no

Preferences Special yes no no no no

PriceLevel List yes yes yes yes no

Purchase order Txn yes yes yes yes no

Receive payment Txn yes yes yes yes no

Receive payment to

deposit

Txn yes no no no no

Sales order (US

Premier Edition and

above)

Txn yes yes yes yes no

Sales receipt Txn yes yes yes yes yes

Sales rep List yes yes yes yes no

Sales tax code List yes yes yes yes no

Sales tax group item List yes yes yes yes no

Sales tax item List yes yes yes yes no

Sales tax payment

check

Txn yes no no no no

Service item List yes yes yes yes no

Ship method List yes yes no yes no

SpecialAccount List yes yes no yes no

SpecialItem List yes yes no yes no

Standard terms List yes yes no yes no

Subtotal item List yes yes yes yes no

Template List yes no no no no

Terms List yes no no no no

Time tracking Txn yes yes no yes no

TimeReport Report yes no no no no

To do List yes yes no yes no

TransactionQuery Txn yes no no no no

TxnDisplay UI

Integra-

tion

no yes yes no no

UIEventSubscription Event

Notif.

yes yes no yes no

UIExtensionSubscrip-

tion

Event

Notif.

yes yes no yes no

UnitOfMeasureSet List yes add no yes no

Vendor List yes yes yes yes no

Vendor credit Txn yes yes yes yes yes

Vendor type List yes yes no yes no

Wage payroll item List yes yes no no no

WorkersCompCode List yes yes yes no no

Object Type Query Add Modify Delete Void

522 Appendix B: QuickBooks Data Accessible Via SDK Objects/Operations

(c) 2013 Intuit Inc. All rights reserved.

NOTE

NOTE Requires that the company file being accessed is
currently subscribed to a payroll service.

SDK Requests Supported in QuickBooks Simple Start Edition

The following table lists all of the SDK requests for the US desktop editions of

QuickBooks, and indicates whether each request is supported by QB Simple Start.

Additional notes follow the table.

SDK Requests Supported in QuickBooks Simple Start Edition 523

(c) 2013 Intuit Inc. All rights reserved.

Table B-2 SDK Requests Supported by QB Simple Start (US editions, desktop)

Request Supported by QB Simple Start?

ARRefundCreditCardAdd (5.0) Yes

ARRefundCreditCardQuery (5.0) Yes

AccountAdd Yes

AccountMod (6.0) Yes

AccountQuery Yes

AgingReportQuery (2.0) Yes

BillAdd No

BillMod (3.0) Yes

BillPaymentCheckAdd (2.0) No

BillPaymentCheckMod (6.0) Yes

BillPaymentCheckQuery (2.0) Yes

BillPaymentCreditCardAdd (2.0) No

BillPaymentCreditCardQuery (2.0) Yes

BillQuery Yes

BillToPayQuery (2.0) Yes

BillingRateAdd (6.0) No

BillingRateQuery (6.0) Yes

BudgetSummaryReportQuery (3.0) Yes

BuildAssemblyAdd (5.0) No

BuildAssemblyMod (5.0) Yes

BuildAssemblyQuery (5.0) Yes

ChargeAdd (2.0) No

ChargeMod (3.0) Yes

ChargeQuery (2.0) Yes

CheckAdd Yes

CheckMod (6.0) Yes

CheckQuery Yes

ClassAdd Yes

ClassQuery Yes

ClearedStatusMod (2.0) Yes

CompanyActivityQuery (2.0) Yes

CompanyQuery Yes

CreditCardChargeAdd Yes

CreditCardChargeMod (6.0) Yes

CreditCardChargeQuery Yes

CreditCardCreditAdd Yes

CreditCardCreditMod (6.0) Yes

CreditCardCreditQuery Yes

CreditMemoAdd Yes

CreditMemoMod (3.0) Yes

524 Appendix B: QuickBooks Data Accessible Via SDK Objects/Operations

(c) 2013 Intuit Inc. All rights reserved.

CreditMemoQuery Yes

CustomDetailReportQuery (2.0) Yes

CustomSummaryReportQuery (2.0) Yes

CustomerAdd Yes

CustomerMod Yes

CustomerMsgAdd Yes

CustomerMsgQuery Yes

CustomerQuery Yes

CustomerTypeAdd Yes

CustomerTypeQuery Yes

DataEventRecoveryInfoDel (3.0) No

DataEventRecoveryInfoQuery (3.0) No

DataExtAdd (2.0) Yes

DataExtDefAdd (2.0) Yes

DataExtDefDel (2.0) Yes

DataExtDefMod (2.0) Yes

DataExtDefQuery (2.0) Yes

DataExtDel (2.0) Yes

DataExtMod (2.0) Yes

DateDrivenTermsAdd Yes

DateDrivenTermsQuery Yes

DepositAdd (2.0) Yes

DepositQuery (2.0) Yes

EmployeeAdd No

EmployeeMod Yes

EmployeeQuery Yes

EntityQuery Yes

EstimateAdd Yes

EstimateMod (3.0) Yes

EstimateQuery Yes

GeneralDetailReportQuery (2.0) Yes

GeneralSummaryReportQuery (2.0) Yes

HostQuery Yes

InventoryAdjustmentAdd (2.0) No

InventoryAdjustmentQuery (2.0) Yes

InvoiceAdd Yes

InvoiceMod (2.1) Yes

InvoiceQuery Yes

ItemAssembliesCanBuildQuery (5.0) Yes

ItemDiscountAdd No

ItemDiscountMod (3.0) Yes

Request Supported by QB Simple Start?

SDK Requests Supported in QuickBooks Simple Start Edition 525

(c) 2013 Intuit Inc. All rights reserved.

ItemDiscountQuery Yes

ItemFixedAssetAdd (3.0) No

ItemFixedAssetMod (3.0) Yes

ItemFixedAssetQuery (3.0) Yes

ItemGroupAdd No

ItemGroupMod (3.0) Yes

ItemGroupQuery Yes

ItemInventoryAdd No

ItemInventoryAssemblyAdd (2.0) No

ItemInventoryAssemblyMod (3.0) Yes

ItemInventoryAssemblyQuery (2.0) Yes

ItemInventoryMod Yes

ItemInventoryQuery Yes

ItemNonInventoryAdd No

ItemNonInventoryMod Yes

ItemNonInventoryQuery Yes

ItemOtherChargeAdd Yes

ItemOtherChargeMod (3.0) Yes

ItemOtherChargeQuery Yes

ItemPaymentAdd No

ItemPaymentMod (3.0) Yes

ItemPaymentQuery Yes

ItemQuery Yes

ItemReceiptAdd (4.0) No

ItemReceiptMod (4.0) Yes

ItemReceiptQuery (3.0) Yes

ItemSalesTaxAdd No

ItemSalesTaxGroupAdd No

ItemSalesTaxGroupMod (3.0) Yes

ItemSalesTaxGroupQuery Yes

ItemSalesTaxMod (3.0) Yes

ItemSalesTaxQuery Yes

ItemServiceAdd No

ItemServiceMod Yes

ItemServiceQuery Yes

ItemSubtotalAdd No

ItemSubtotalMod (3.0) Yes

ItemSubtotalQuery Yes

JobReportQuery (2.0) Yes

JobTypeAdd No

JobTypeQuery Yes

Request Supported by QB Simple Start?

526 Appendix B: QuickBooks Data Accessible Via SDK Objects/Operations

(c) 2013 Intuit Inc. All rights reserved.

JournalEntryAdd Yes

JournalEntryMod (6.0) Yes

JournalEntryQuery Yes

ListDel (1.1) Yes

ListDeletedQuery (2.0) Yes

ListDisplayAdd (3.0) Yes

ListDisplayMod (3.0) Yes

OtherNameAdd Yes

OtherNameMod Yes

OtherNameQuery Yes

PaymentMethodAdd Yes

PaymentMethodQuery Yes

PayrollDetailReportQuery (3.0) Yes

PayrollItemNonWageQuery (3.0) Yes

PayrollItemWageAdd (2.0) No

PayrollItemWageQuery Yes

PayrollSummaryReportQuery (3.0) Yes

PreferencesQuery (1.1) Yes

PriceLevelAdd (4.0) No

PriceLevelMod (4.0) Yes

PriceLevelQuery (4.0) Yes

PurchaseOrderAdd No

PurchaseOrderMod (2.1) Yes

PurchaseOrderQuery Yes

ReceivePaymentAdd (1.1) Yes

ReceivePaymentMod (6.0) Yes

ReceivePaymentQuery (1.1) Yes

ReceivePaymentToDepositQuery (2.0) Yes

SalesOrderAdd (2.1) No

SalesOrderMod (3.0) Yes

SalesOrderQuery (2.1) Yes

SalesReceiptAdd Yes

SalesReceiptMod (5.0) Yes

SalesReceiptQuery Yes

SalesRepAdd No

SalesRepMod (3.0) Yes

SalesRepQuery Yes

SalesTaxCodeAdd Yes

SalesTaxCodeQuery Yes

SalesTaxPaymentCheckQuery (2.0) Yes

ShipMethodAdd No

Request Supported by QB Simple Start?

SDK Requests Supported in QuickBooks Simple Start Edition 527

(c) 2013 Intuit Inc. All rights reserved.

ShipMethodQuery Yes

SpecialAccountAdd (6.0) Yes, but only the following accounts can be added:

AccountsReceivable
UncategorizedExpenses
UncategorizedIncome

SpecialItemAdd (6.0) No

StandardTermsAdd Yes

StandardTermsQuery Yes

TemplateQuery (3.0) Yes

TermsQuery Yes

TimeReportQuery (2.0) Yes

TimeTrackingAdd No

TimeTrackingMod (6.0) Yes

TimeTrackingQuery Yes

ToDoAdd No

ToDoQuery Yes

TransactionQuery (4.0) Yes

TxnDel (1.1) Yes

TxnDeletedQuery (2.0) Yes

WorkersCompCodeAdd (7.0) No

WorkersCompCodeMod (7.0) No

WorkersCompCodeQuery (7.0) No

UnitOfMeasureSetAdd (7.0) No

UnitOfMeasureSetQuery (7.0) No

Request Supported by QB Simple Start?

528 Appendix B: QuickBooks Data Accessible Via SDK Objects/Operations

(c) 2013 Intuit Inc. All rights reserved.

TxnDisplayAdd (3.0) Yes, with some caveats. You can invoke this only on
transaction types supported by QB Simple Start, because QB
Simple Start lacks the UI components for the unsupported
types.

Supported transaction types:
Check
CreditMemo
Deposit
Estimate
Invoice
JournalEntry
ReceivePayment
SalesReceipt
SalesTaxPaymentCheck

Unsupported transaction types:
Bill
BillPayment
BuildAssembly
Charge
CreditCardCharge
CreditCardCredit
InventoryAdjustment
ItemReceipt
PurchaseOrder
SalesOrder
VendorCredit

Important: For the unsupported Bill, BuildAssembly, Charge,
CreditCardCharge, CreditCardCredit, InventoryAdjustment, and
ItemReceipt requests, invoking TxnDisplayAdd results in
QuickBooks displaying the appropriate Add form to the user,
which the user can fill out, but the user’s attempt to save the
data (perform the transaction) will fail with an error message
stating that this feature is not available for this edition.

For the unsupported BillPayment transaction, the above
behavior is the same, but there is a differentd and potentially
misleading error message. That is, the form is displayed in
QuickBooks, but whether you do a payment by check or credit
card, the transaction fails and the message simply says “there
was a problem recording the bill payment for …”.

Also, the attempt to display the add form for PurchaseOrder,
SalesOrder, doesn’t display any form in QuickBooks at all.
Instead the TransactionDisplayAdd fails with a message stating
that this feature is not supported by this edition (Simple Start).

Request Supported by QB Simple Start?

Additional Differences for SDK Support of QB Simple Start 529

(c) 2013 Intuit Inc. All rights reserved.

Additional Differences for SDK Support of QB Simple Start

The Inventory Stock Status by Vendor report is not accessible through the Simple Start UI.

But when an end-user with Simple Start runs the report via SDK requests on a company file

created by Premier or Enterprise that has inventory, the user will not be able to retrieve the

TxnDisplayMod (3.0) Yes, with some caveats. You can invoke this only on
transaction types supported by QB Simple Start, because QB
Simple Start lacks the UI components for the unsupported
types.

Supported transaction types:
Bill
BuildAssembly
Charge
Check
CreditCardCharge
CreditCardCredit
CreditMemo
Deposit
Estimate
InventoryAdjustment
Invoice
ItemReceipt
JournalEntry
ReceivePayment
SalesReceipt
SalesTaxPaymentCheck
VendorCredit

Unsupported transaction types:
BillPaymentCheck, BillPaymentCreditCard, fail with an error
stating that the check has been deleted, possibly by another
user. However, doing a query on that same txnID is successful,
and that txn is displayed in the simple start check register (bill
payment check).

PurchaseOrder and SalesOrder for Mod fail with the error
message stating this is not available for this edition (simple
start)

TxnVoid (1.1) Yes

VehicleAdd (6.0) No

VehicleMod (6.0) Yes

VehicleQuery (6.0) Yes

VehicleMileageAdd (6.0) No

VehicleMileageQuery (6.0) Yes

VendorAdd Yes

VendorCreditAdd No

VendorCreditQuery Yes

VendorMod Yes

VendorQuery Yes

VendorTypeAdd Yes

VendorTypeQuery Yes

Request Supported by QB Simple Start?

530 Appendix B: QuickBooks Data Accessible Via SDK Objects/Operations

(c) 2013 Intuit Inc. All rights reserved.

columns QuantityOnSalesOrder and QuantityAvailable. The Inventory Stock Status by

Vendor report does not have columns QuantityOnSalesOrder and QuantityAvailable for

SimpleStart.

Also, if you do a PreferencesQueryRq against Simple Start, the PreferencesRet will contain

elements that cannot be directly controlled by the user. The preferences UI in SimpleStart

is very different from the other editions.

Notes for QB CA/UK 2008 and Newer 531

(c) 2013 Intuit Inc. All rights reserved.

APPENDIX C 1

qbXML SPECIFICATION FOR THE CANADIAN AND UK EDITIONS 1

This appendix contains CA and UK specific information. It is broken into two main parts:

QB CA/UK and newer, and QB CA/UK 2007 and Older.

The reason for this division is that CA/UK 2007 and older versions support only up to CA/

UK3.0 spec, while QB CA/UK 2008/2009 supports ONLY the new unified 6.0 spec, with

newer specs (7.0, 8.0, etc) expected to be supported by subsequent new versions of QB for

Canada and UK.

Notes for QB CA/UK 2008 and Newer

The following items apply to Canada or UK as indicated.

Canada

Instead of accepting US states in the various “States” fields, only Canadian provinces are

accepted in the SDK. The list of allowed values will be:

AB, BC, MB, NB, NL, NS, NT, NU, ON, PE, QC, SK, YT

These will be input via the <State> field provided in the spec.

Canada accepts a Social Insurance Number (SIN) in the <SSN> field provided in the spec.

The following transactions types are not supported

• SalesTaxPayment

• ARRefundCreditCard

The following fields are not supported:

Tax1Total, Tax2Total, Tax1Rate, Tax2Rate, Tax1Number, Tax2Number, ChargeTax1,

ChargeTax2, TrackTax1Expenses, TrackTax2Expenses, Tax1ReportingPeriod,

Tax2ReportingPeriod, AllowCustomerTaxCodes, AmountIncludesVAT, IsTax1Exempt and

IsTax2Exempt

PST and GST taxes will need to be used, similar to the way the US handles taxes.

UK

TBD.

532 Appendix C: qbXML Specification for the Canadian and UK Editions

(c) 2013 Intuit Inc. All rights reserved.

Notes for QB CA/UK 2007 and Older

All of the information in the following sections apply only to pre-QB CA and UK versions,

which support the CA/UK2.0 and CA/UK3.0 specs.

IMPORTANT

While CA QB 2003-2007 supports qbXML CA3.0 & CA2.0 and
the UK QB 2003-2006 supports qbXML UK 3.0 & UK2.0, these
qbXML specs are NOT be supported by QB CA/UK 2008 and
later. Instead those future releases will support only qbXML
6.0 and later.

The 2004 through 2007 Canadian and UK editions do not support the new functionality

provided in the qbXML specs 4.0, 5.0, or 6.0. They do, however, support the v3.0 qbXML

spec.

The v3.0 qbXML specification exists in several slightly different forms, one supported by

Canadian editions of QuickBooks, one supported by U.S. editions, and one supported by

UK editions of QuickBooks. See the QB SDK Release Notes for complete information on

supported versions.

NOTE

In the future we hope to provide a way for applications to
make a single set of QuickBooks SDK calls that will work with
U.S., Canadian and UK versions of QuickBooks. This may
imply that code written to work with current or past versions
of Canadian or UK editions of QuickBooks (e.g. to deal with
with sales tax and/or multi-currency support) may need to be
rewritten in the future before it can be used with future
versions of these products.

Differences Between the Canadian and UK Specs

The following table lists some of the spec differences.

Notes for QB CA/UK 2007 and Older 533

(c) 2013 Intuit Inc. All rights reserved.

Table C-1 Canadian and UK Spec differences

NOTE

Althought TaxCodeAdd/Mod/Ret have TaxType in the UK spec,
(not in the Canadian spec), this field is not supported in the
current UK implementation.

Canadian Spec UK Spec

EmployeeAdd/Mod/Ret have SIN and Gender EmployeeAdd/Mod/Ret have NiNumber,
MaritalStatus, and Sex

VacationHours is made up of VacationPayAvailable,
VacationPayUsed, RetainOrPayEveryPeriod,
VacationPercentage, and a repeating
PayrollItemVacationRef

VacationHours is made up of HoursAvailable,
AccrualPeriod, HoursAccrued, MaximumHours,
and IsResettingHoursEachNewYear

WageType has HourlyRegular, SalaryRegular, Bonus,
and Commission

WageType has Commission, HourlyRegular,
HourlySick, HourlyVacation, SalaryRegular,
SalarySick, and SalaryVacation in the UK spec

Address, ShipAddress, LegalAddress, BillAddress,
VendorAddress, OtherNameAddress, and
CompanyAddressForCustomer have Province

Address, ShipAddress, LegalAddress,
BillAddress, VendorAddress, OtherNameAddress,
and CompanyAddressForCustomer have County.

CustomerAdd/Mod/Ret have TaxCodeRef in a different
location within the XML in the Canadian spec compared
to the UK spec

CustomerAdd/Mod/Ret have TaxCodeRef in a
different location within the XML in the Canadian
spec compared to the UK spec

CompanyRet has BusinessNumber CompanyRet does not have BusinessNumber

CustomerAdd/Mod/Ret and VendorAdd/Mod/Ret does
not have BusinessNumber

CustomerAdd/Mod/Ret and VendorAdd/Mod/Ret
have BusinessNumber

ExpenseLineMod/Ret and ItemLineMod/Ret does not
have Tax1Amount

ExpenseLineMod/Ret and ItemLineMod/Ret have
Tax1Amount

ReportsPreferences does not have
ReportAmountsIncludeVAT

ReportsPreferences has
ReportAmountsIncludeVAT

AmountIncludesVAT is not in any of the following:

ItemServiceAdd/Mod/Ret, ItemNonInventoryAdd/Mod/

Ret, ItemOtherChargeAdd/Mod/Ret, ItemInventoryAdd/

Mod/Ret, ItemInventoryAssemblyAdd/Mod/Ret,

ItemDiscountAdd/Mod/Ret, InvoiceAdd/Mod/Ret,
EstimateAdd/Mod/Ret, SalesReceiptAdd/Ret,
CreditMemoAdd/Mod/Ret, PurchaseOrderAdd/Mod/
Ret, BillAdd/Mod/Ret, ItemReceiptAdd/Ret,
VendorCreditAdd/Ret, CheckAdd/Ret,
CreditCardChargeAdd/Ret, and CreditCardCreditAdd/
Ret

AmountIncludesVAT appears in all of the

following

ItemServiceAdd/Mod/Ret, ItemNonInventoryAdd/

Mod/Ret, ItemOtherChargeAdd/Mod/Ret,

ItemInventoryAdd/Mod/Ret,
ItemInventoryAssemblyAdd/Mod/Ret,
ItemDiscountAdd/Mod/Ret, InvoiceAdd/Mod/Ret,
EstimateAdd/Mod/Ret, SalesReceiptAdd/Ret,
CreditMemoAdd/Mod/Ret, PurchaseOrderAdd/
Mod/Ret, BillAdd/Mod/Ret, ItemReceiptAdd/Ret,
VendorCreditAdd/Ret, CheckAdd/Ret,

CreditCardChargeAdd/Ret, and

CreditCardCreditAdd/Ret

534 Appendix C: qbXML Specification for the Canadian and UK Editions

(c) 2013 Intuit Inc. All rights reserved.

Differences Between the US and Canadian qbXML Spec

The Canadian/UK and U.S. forms of the qbXML specification are nearly identical. The

biggest ways in which they differ is that the Canadian version accommodates Canadian/UK

tax structures and the use of multiple currencies:

• Canadian/UK editions of QuickBooks include a Tax Code list that makes it easier to

work with Canada or UK-specific taxes. Through the SDK you can add taxes to this

list, modify the list, query the list, and delete tax codes from the list (using

TaxCodeAdd, TaxCodeMod, TaxCodeQuery, and ListDel messages). You can also

assign these tax codes to transactions (using TaxCodeRef and CustomerTaxCodeRef

object references).

• Canadian/UK editions of QuickBooks include a Currency list that is available when the

user has turned on the multicurrency preference. Through the SDK you can add

currencies to this list, modify the list, query the list, and delete currencies from the list

(using CurrencyAdd, CurrencyMod, CurrencyQuery, and ListDel messages). You can

also include currency-related information in list and transaction objects.

The Canadian/UK and U.S. forms of the qbXML specifications differ in a number of other

ways, too. The following tables summarize the differences.

NOTE

For details about new elements and objects shown here, and
information about how to use them, see the QBFC Onscreen
Reference (for Canadian/UK editions of QuickBooks) online at
http://developer-static.intuit.com/qbsdk-current/common/
newosr/index.html

http://developer-static.intuit.com/qbsdk-current/common/newosr/index.html
http://developer-static.intuit.com/qbsdk-current/common/newosr/index.html
http://developer-static.intuit.com/qbsdk-current/common/newosr/index.html

Notes for QB CA/UK 2007 and Older 535

(c) 2013 Intuit Inc. All rights reserved.

Canada qbXML
does not include

Instead, Canada qbXML
includes

• any information
related to sales
taxes or sales
tax codes.

• two new types of taxes, Tax 1 and Tax 2. Tax 1 is used for Goods and Services Tax,
or GST; Tax 2 is used for Provincial Sales Taxes, or PST. (U.K. editions of
QuickBooks use Tax 1 for Value Added Tax (VAT) and do not use Tax 2 at all.)

• the means to access the Tax Code list.

Related new qbXML messages

TaxCodeAdd
TaxCodeMod
TaxCodeQuery

Related new qbXML object references

TaxCodeRef
CustomerTaxCodeRef
DefaultCustomerTaxCodeRef
Tax1AgencyRef
Tax2AgencyRef

Related new qbXML elements
Tax1Rate and Tax2Rate
Tax1Total and Tax2Total
Tax1Number and Tax2Number
ChargeTax1 and ChargeTax2
TrackTax1Expenses and TrackTax2Expenses
Tax1ReportingPeriod and Tax2ReportingPeriod
AllowCustomerTaxCodes
AmountIncludesVAT
IsTax1Exempt and IsTax2Exempt
(Boolean values that are true for items
exempt from Tax 1 or Tax 2)

IsPiggyBackRate
(Boolean value that is true when Tax 2
is partly determined by Tax 1)

• information
about social
security
numbers
(SNNs).

• information about social insurance numbers (SINs).

Related new qbXML element

SIN

• state information
in addresses.

• province information in addresses.

Related new qbXML element
Province

• information
about 1099
forms.

• information about statement of income (T4A) forms.

Related new qbXML element

IsVendorEligibleForT4A

536 Appendix C: qbXML Specification for the Canadian and UK Editions

(c) 2013 Intuit Inc. All rights reserved.

Installation

The correct (country-specific) SDK-support files are installed automatically along with

Canadian/UK and U.S. editions of QuickBooks. No extra installation is needed.

About Units of Measure

A Units of Measure feature is available in Canadian/UK editions of QuickBooks, but you

currently can’t access it through the SDK. The SDK does already give you a way to find out

whether a QuickBooks file has the Units of Measure preference turned on, however. To find

out:

Canada qbXML includes

• a new data type, FLOATTYPE, used to describe international exchange rates.

• means to access the Currency list and also to include currency information in some list and transaction
objects.

Related new qbXML messages

CurrencyAdd
CurrencyMod
CurrencyQuery

Related new qbXML elements

ExchangeRate
Symbol
Code
CurrencyHotKey
SymbolPos
DecimalSep
DecimalPlaces
ThousandSep
ForeignPrice

Related new qbXML object references

CurrencyRef
HomeCurrencyRef (returned by PreferencesQuery message)
ForeignCurrencyRef (returned by PreferencesQuery message)

• new currency information returned by PreferencesQuery messages.

Related new qbXML elements

IsUsingForeignPricesOnItems
IsUsingMulticurrency
IsUsingUnitsOfMeasure (See “About Units of Measure.”)

Related qbXML object references

HomeCurrencyRef
ForeignCurrencyRef

• a few U.K.-specific elements related to European currencies.

Related new qbXML elements

IsECVatCode
IsEmu
EmuRate

Notes for QB CA/UK 2007 and Older 537

(c) 2013 Intuit Inc. All rights reserved.

1. Send a PreferencesQuery request to QuickBooks.

2. Examine the returned PreferencesRet object. In the PurchasesAndVendorsPreferences

aggregate, check whether the IsUsingUnitsOfMeasure element is true.

If the Units of Measure preference is turned on, an interactive user might specify inventory

units, sales units, and purchasing units for inventory and assembly items, even though you

cannot retrieve any of this information through the SDK. For example, imagine a

QuickBooks file that has an inventory item called soup and is set up with this Units of

Measure information:

• Inventory unit: case

• Sales unit: can, at 12 cans/case

• Purchasing unit: flat, at 2 cases/flat

Given this set up, an invoice selling 3 cans of soup would reduce inventory by .25 cases

(based on the relationship of 12 cans per case). Purchasing 1 flat would increase inventory

by 2 cases. But your application could not make sense of this data without the

(irretrievable) background information about inventory units, sales units, and purchasing

units. This means an SDK query on transactions and items might return unpredictable

results.

For this reason, if your application relies on this kind of data from transactions, we

recommend that you do the following:

1. Design your application to check (as described above) whether the Units of Measure

preference is turned on.

2. If the Units of Measure feature is on, consider sending a message that asks your users

not to use it.

About UI Integration

If you have two versions of your application, one for Canadian/UK editions of QuickBooks

and one for U.S. editions of QuickBooks, and you are integrating with the QuickBooks user

interface, note these important limitations:

• It is possible that a user who selects your UI extension from within a Canadian/UK

edition of QuickBooks will be taken to the U.S. version of your application, and vice

versa. You cannot create a subscription on one machine such that a UI item added to

U.S. editions of QuickBooks will invoke the U.S. version of your application while that

same UI item in Canadian/UK editions of QuickBooks will invoke the Canadian/UK

version of your application. Instead, each version of the application will overwrite any

existing subscription, so that the last one installed “wins.”

• If you have a U.S.-only application, you cannot prevent your UI items from showing up

in Canadian/UK editions of QuickBooks. Conversely, if you have a Canada-only

application, you cannot have a UI item that only shows up in Canadian/UK editions of

QuickBooks. UI extensions show up in all editions of QuickBooks.

538 Appendix C: qbXML Specification for the Canadian and UK Editions

(c) 2013 Intuit Inc. All rights reserved.

 539

(c) 2013 Intuit Inc. All rights reserved.

APPENDIX D 1

qbXML REQUESTPROCESSOR METHOD REFERENCE 1

This chapter provides alphabetical reference pages for the methods included in the qbXML

Request Processor COM API. These methods can be grouped into the following main

categories:

• Methods used to establish and break down the communication between QuickBooks

and your application

• Methods used to set and get preference information from the AuthPreferences property

of the request processor (beginning in SDK 4.0).

• Methods used to query the Request Processor about its current state (for example, what

version of the Request Processor is running and what company file is currently open).

Table D-1 on page 539 and Table D-2 on page 540 summarize the methods that are

included in this reference chapter.

• Methods used for event subscription activity.

Table D-1 Communication Methods and Properties for RequestProcessor2

Name Description

AuthPreferences This property returns the AuthPreferences object,
on which you can invoke the various set/get
methods described in Table D-2, “Authorization
Preferences Methods for IAuthPreferences,” on
page 540.

OpenConnection2 Opens a connection between your application and
QuickBooks, as specified in the connection type
parameter.

The older OpenConnection method used prior to
SDK 4.0 is still supported for backward
compatibility.

BeginSession Begins a session operating on a specific company
file

ProcessRequest Sends a request message set to QuickBooks and
returns with a response message set from
QuickBooks

EndSession Ends the session for a specific company file

CloseConnection Closes the connection between your application
and QuickBooks

540 Appendix D: qbXML RequestProcessor Method Reference

(c) 2013 Intuit Inc. All rights reserved.

Table D-2 Authorization Preferences Methods for IAuthPreferences

Table D-3 Query Methods

Name Description

WasAuthPreferencesObeyed Indicates whether the version of
QuickBooks supports
AuthPreferences.

GetUnattendedModePref Retrieves the current
AuthPreferences setting for
unattended mode.

PutUnattendedModePref Specifies whether your application
requires unattended mode.

GetPersonalDataPref Retrieves the current
AuthPreferences setting for
personal data requirement.

PutPersonalDataPref Specifies whether your application
requires access to personal data.

GetIsReadOnly Retrieves the current
AuthPreferences setting for read-
only access

PutIsReadOnly Specifies whether your application
is a read-only application.

PutAuthFlags Specifies the AuthFlags for your
applications, such as which
QuickBooks editions it supports
and optionally forces the display
of the Auth dialog to the end user.

Name Description

GetCurrentCompanyFileName Returns the name of the company file that is
currently open (requires a ticket)

QBXMLVersionsForSession Returns the versions of the qbXML specification
supported by the QuickBooks product your
application is currently connected to (requires a
ticket)

ReleaseLevel Returns the release description of the qbXML
Request Processor (for example, alpha, beta, or
release)

ReleaseNumber Returns the release number of the qbXML Request
Processor (for example, the release number for
version 2.0 is 1)

MajorVersion Returns the major version number of the qbXML
Request Processor (for version 2.0, the major
version number is 2)

MinorVersion Returns the minor version number of the qbXML
Request Processor (for version 2.0, the minor
version number is 0)

 541

(c) 2013 Intuit Inc. All rights reserved.

Table D-4 Subscription Activity Methods

Name Description

QBXMLVersionsForSubscription Identifies the qbXML spec versions supported for
subscription activity.

ProcessSubscription Sends the supplied qbXML subscription request
(add, delete, query) to the request processor.

542 Appendix D: qbXML RequestProcessor Method Reference

(c) 2013 Intuit Inc. All rights reserved.

AuthPreferences

HRESULT AuthPreferences([out, retval] IAuthPreferences**

ppAuthPreferences);

Returns the AuthPreferences property object.

Parameters

ppAuthPreferences Pointer pointer to the returned IAuthPreferences object.

Usage

This method is invoked on the RequestProcessor2 object to return the AuthPreference property

object, in order for subsequent querying or setting of its preferences.

Example (Visual Basic)

Dim qbXMLRP as QBXMLRP2Lib.RequestProcessor2

Dim prefs As qbXMLRP.AuthPreferences

Set prefs = qbXMLCOM.AuthPreferences

BeginSession 543

(c) 2013 Intuit Inc. All rights reserved.

BeginSession

HRESULT BeginSession([in] BSTR qbCompanyFileName,

[in] QBFileMode qbOpenFileMode,

[out, retval] BSTR* ticket);

After a QuickBooks connection has been established, this method begins a session working on the

specified QuickBooks company file in the specified mode. The returned session ticket is passed in

to subsequent calls to ProcessRequest.

Parameters

qbCompanyFileName Pathname of the specified QuickBooks company file.

If QuickBooks is already launched with an open company file, this

value can be NULL or an empty string and your application will

attach to this open company file. If no file is open, an error occurs.

(If this call succeeds with NULL or an empty string for this

parameter, you can obtain the name of the currently open company

file by calling the GetCurrentCompanyFileName method.)

qbOpenFileMode Mode in which to open the company file:

qbFileOpenSingleUser

Single-user mode; grants your application exclusive access to QuickBooks for this

company file.

qbFileOpen

Multi-user mode; allows your application to share access to the specified company

file with other applications as well as with a user who is interacting directly with

the company file through QuickBooks.

qbFileOpenDoNotCare

Allows either single-user or multi-user mode. If the specified company file is

already open, QuickBooks allows the authentication process to proceed. If no

company file is open, QuickBooks opens the company file in multi-user mode. If a

different company file is already open, an error is returned.

ticket Pointer to the returned session ticket. Your application must save this

ticket (store it or keep it in memory) and pass it to any

ProcessRequest, GetCurrentCompanyFileName, and

QBXMLVersionsForSession calls made in this session only. When

you are finished with the session for a specified company file, you

release the ticket by passing it to the EndSession call that terminates

the session. QuickBooks frees the memory allocated for the ticket

when you return it.

544 Appendix D: qbXML RequestProcessor Method Reference

(c) 2013 Intuit Inc. All rights reserved.

Usage

The qbCompanyFileName parameter can be specified explicitly for this method, or you can pass in

NULL (or an empty string) to see if a company file is already open. If it is, you can call

GetCurrentCompanyFileName to obtain the file name. If no company file is currently open (and

you did not specify a company file), BeginSession fails and you will need to query the user to

determine which company file to open.

Using the SDKDiag Tool to Troubleshoot Connection Problems

For help with communication problems with QuickBooks, check out the IPP Developer

website for more information and a useful diagnostic tool called qbSDKDiag.

The qbSDKDiag tool turns on the maximum logging capability of QuickBooks and the

SDK, gathers important registry data about QuickBooks, starts QuickBooks, and attempts

to establish a connection with QuickBooks in interactive mode using QBXMLRP and

QBXMLRP2.

Having successfully connected in interactive mode, the user is then asked to enable

unattended access for the diagnostic tool and to close QuickBooks. The diagnostic tool then

attempts to connect with both QBXMLRP and QBXMLRP2 using unattended mode.

Finally, all the log files (qbsdklog.txt, qbinstancefinder.log, qbwin.log, and the diagnostic

log itself) are zipped up for you to email to support personnel at a later time.

Example (Visual Basic)

Dim qbXMLRP as QBXMLRP2Lib.RequestProcessor2

strTicket = qbXMLRP.BeginSession("",QBXMLRP2Lib.qbFileOpenDoNotCare)

Who started QuickBooks Mode Who may obtain access

Integrated Application Single-user No one else

Integrated Application Multi-user QB user on same machine = no access

All other integrated applications =
access

QB users on other machines = access

QuickBooks User Single-user QB user already logged in

Only one integrated application =
access

QuickBooks User Multi-user QB users = access

Integrated applications = access

CloseConnection 545

(c) 2013 Intuit Inc. All rights reserved.

CloseConnection

HRESULT CloseConnection();

Closes the connection with QuickBooks.

Example (Visual Basic)

Dim qbXMLRP as QBXMLRP2Lib.RequestProcessor2

qbXMLRP.CloseConnection

546 Appendix D: qbXML RequestProcessor Method Reference

(c) 2013 Intuit Inc. All rights reserved.

EndSession

HRESULT EndSession([in] BSTR ticket);

Frees resources, closes the company file, and ends the session.

Parameters

ticket Handle for the current session. This method releases the memory

allocated for the ticket, and the ticket can no longer be used.

Example (Visual Basic)

Dim qbXMLRP as QBXMLRP2Lib.RequestProcessor2

qbXMLRP.EndSession strTicket

GetCurrentCompanyFileName 547

(c) 2013 Intuit Inc. All rights reserved.

GetCurrentCompanyFileName

HRESULT GetCurrentCompanyFileName([in] BSTR ticket,

[out, retval] BSTR* pFileName);

Returns the name of the currently open company file.

Parameters

ticket Handle for the current session.

pFileName Pointer to the returned name of the currently open company file.

Usage

This method can be used any time the application needs to display the name of the company file—

for example, when it asks the user to confirm modification of the data contained in a particular

company file. If you call BeginSession and do not explicitly specify a company file name (and the

call succeeds), you should then call GetCurrentCompanyFileName to obtain the name of the

company file that is currently open.

Example (Visual Basic)

Dim qbXMLRP as QBXMLRP2Lib.RequestProcessor2

Dim strQBFileName as String

strQBFileName = qbXMLRP.GetCurrentCompanyFileName(strTicket)

548 Appendix D: qbXML RequestProcessor Method Reference

(c) 2013 Intuit Inc. All rights reserved.

GetIsReadOnly

HRESULT GetIsReadOnly

([in] BSTR ticket,

[out, retval] VARIANT_BOOL* pIsReadOnly);

Gets the read-only preference currently in effect for the application.

Parameters

ticket Valid ticket returned from call to BeginSession.

pIsReadOnly Pointer to the returned value.

Usage

This method can be used only after the call to BeginSession.

Example (Visual Basic)

Dim qbXMLCOM as QBXMLRP2Lib.RequestProcessor2

Dim prefs As QBXMLRP2Lib.AuthPreferences

Set prefs = qbXMLCOM.AuthPreferences

strTicket = qbXMLCOM.BeginSession(strCompanyFilename, openMode)

Dim BoolVal As Boolean

BoolVal = prefs.GetIsReadOnly(strTicket)

GetPersonalDataPref 549

(c) 2013 Intuit Inc. All rights reserved.

GetPersonalDataPref

HRESULT GetPersonalDataPref

([in] BSTR ticket,

[out, retval] QBXMLRPPersonalDataPrefType* pPersonalDataPref);

Returns the personal data access preference currently in effect for the application.

Parameters

ticket Valid ticket returned from call to BeginSession.

pPersonalDataPref Pointer to the returned preference value. Possible values to be

returned are: pdpRequired, pdpOptional, pdpNotNeeded.

Usage

This method can be used after the call to BeginSession.

Example (Visual Basic)

Dim qbXMLCOM as QBXMLRP2Lib.RequestProcessor2

Dim prefs As QBXMLRP2Lib.AuthPreferences

Set prefs = qbXMLCOM.AuthPreferences

strTicket = qbXMLCOM.BeginSession(strCompanyFilename, openMode)

Dim PrefType As QBXMLRPPersonalDataPrefType

PrefType = prefs.GetPersonalDataPref(strTicket)

If (PrefType = pdpNotNeeded) Then

MsgBox "personal data not needed"

End If

If (PrefType = pdpRequired) Then

MsgBox "personal data required"

End If

If (PrefType = pdpOptional) Then

MsgBox "personal data optional"

End If

550 Appendix D: qbXML RequestProcessor Method Reference

(c) 2013 Intuit Inc. All rights reserved.

GetUnattendedModePref

HRESULT GetUnattendedModePref(

[in] BSTR ticket,

[out, retval] QBXMLRPUnattendedModePrefType* pUnattendedModePref);

Returns the unattended mode access preference currently in effect for the application.

Parameters

ticket Valid ticket returned from call to BeginSession.

pUnattendedModePref

Pointer to the returned mode setting. Possible values to be returned

are: umpRequired, umpOptional.

Usage

This method can be used after the call to BeginSession.

Example (Visual Basic)

Dim qbXMLCOM as QBXMLRP2Lib.RequestProcessor2

Dim prefs As QBXMLRP2Lib.AuthPreferences

Set prefs = qbXMLCOM.AuthPreferences

strTicket = qbXMLCOM.BeginSession(strCompanyFilename, openMode)

Dim PrefType As QBXMLRPUnattendedModePrefType

PrefType = prefs.GetUnattendedModePref(strTicket)

If (PrefType = umpOptional) Then

MsgBox "Unattended Mode optional"

End If

If (PrefType = umpRequired) Then

MsgBox "Unattended Mode required"

End If

WasAuthPreferencesObeyed 551

(c) 2013 Intuit Inc. All rights reserved.

WasAuthPreferencesObeyed

HRESULT WasAuthPreferencesObeyed

([in] BSTR ticket,

[out, retval] VARIANT_BOOL* pWasAuthPreferencesObeyed);

Determines whether the QuickBooks version supports AuthPreferences.

Parameters

ticket Valid ticket returned from call to BeginSession.

pWasAuthPreferencesObeyed

Pointer to the returned value. Returns True if the version of

QuickBooks supports AuthPreferences, False if it does not.

Usage

In QuickBooks 2005 and later, the preferences set in AuthPreferences cause a corresponding

QuickBooks authorization dialog to be displayed. If the administrative user does not respond by

authorizing the requested access modes, then the application will not be able to access the

QuickBooks company.

That is, the call to BeginSession will not succeed. If the authorization is granted, then the call to

BeginSession will succeed. Notice that if you call WasAuthPreferencesObeyed, you must call it

after you call BeginSession, hence, this method will always return True for QuickBooks 2005 and

later. However, in QuickBooks versions prior to 2005, the AuthPreferences are ignored, and will

always return False.

Example (Visual Basic)

Dim qbXMLCOM as QBXMLRP2Lib2.RequestProcessor2

Dim prefs As QBXMLRP2Lib.AuthPreferences

Set prefs = qbXMLCOM.AuthPreferences

strTicket = qbXMLCOM.BeginSession(strCompanyFilename, openMode)

Dim WasObeyed As Boolean

WasObeyed = prefs.WasAuthPreferencesObeyed(strTicket)

If (WasObeyed = True) Then

MsgBox "Preferences are supported"

End If

If (WasObeyed = False) Then

MsgBox "Preferences not supported"

End If

552 Appendix D: qbXML RequestProcessor Method Reference

(c) 2013 Intuit Inc. All rights reserved.

PutAuthFlags

HRESULT PutAuthFlags([in] long authFlags);

Specifies the AuthFlags for your application.

Parameters

authFlags Specified as per below under “Usage”.

Usage

This method is used before the call to BeginSession.

Internally, the editions are represented by the following enumerated value:

The ForceAuthDialog value is included as a convenience: if you including it when you construct

your AuthFlags, you cause QuickBooks to display the authorization dialog again for the user to

change the permissions they may have already set for your application.

To specify support for each edition, you simply OR the values for each edition you are supporting.

In the following VB snippet, we specify support for all of the QuickBooks editions and force the

display of the auth dialog.

Example (Visual Basic)

Dim authFlags As Long

authFlags = 0

authFlags = authFlags Or &H8&

authFlags = authFlags Or &H4&

authFlags = authFlags Or &H2&

authFlags = authFlags Or &H1&

authFlags = authFlags Or &H80000000

Dim qbXMLCOM As QBXMLRP2Lib.RequestProcessor2

Dim prefs As QBXMLRP2Lib.AuthPreferences

Set prefs = qbXMLCOM.AuthPreferences

prefs.PutAuthFlags (authFlags)

Behavior Needed Value

SupportQBSimpleStart 0x1

 SupportQBPro 0x2

 SupportQBPremier 0x4

 SupportQBEnterprise 0x8

 ForceAuthDialog 0x80000000

PutIsReadOnly 553

(c) 2013 Intuit Inc. All rights reserved.

PutIsReadOnly

HRESULT PutIsReadOnly([in] VARIANT_BOOL isReadOnly);

Specifies the read and write access requirements for your application.

Parameters

pIsReadOnly Specify a value of True if your application requires read-only access.

Specify False if your application requires read and write access to

QuickBooks.

Usage

This method is used before the call to BeginSession.

Example (Visual Basic)

Dim qbXMLCOM as QBXMLRP2Lib2.RequestProcessor2

Dim prefs As QBXMLRP2Lib.AuthPreferences

Set prefs = qbXMLCOM.AuthPreferences

prefs.PutIsReadOnly True

554 Appendix D: qbXML RequestProcessor Method Reference

(c) 2013 Intuit Inc. All rights reserved.

PutPersonalDataPref

HRESULT PutPersonalDataPref([in] QBXMLRPPersonalDataPrefType

personalDataPref);

Specifies the personal data access requirements for your application.

Parameters

personalDataPref Specify pdpRequired if access to personal data is required,

pdpOptional if you can use the data but don’t require it, or

pdpNotNeeded if you do not use personal data. Notice that if you

specify pdpRequired, and your customer does not authorize that type

of access, then your application will not be able to access

QuickBooks.

Usage

This method is used before the call to BeginSession.

Example (Visual Basic)

Dim qbXMLCOM as QBXMLRP2Lib2.RequestProcessor2

Dim prefs As QBXMLRP2Lib.AuthPreferences

Set prefs = qbXMLCOM.AuthPreferences

prefs.PutPersonalDataPref pdpOptional

PutUnattendedModePref 555

(c) 2013 Intuit Inc. All rights reserved.

PutUnattendedModePref

HRESULT PutUnattendedModePref([in] QBXMLRPUnattendedModePrefType

unattendedModePref);

Specifies the unattended mode access requirements for your application.

Parameters

unattendedModePref

Specify umpRequired if your application must be able to run in

unattended mode, umpOptional if it does not need to run in that

mode. Notice that if you specify umpRequired, and your customer

does not authorize that access, then your application will not be able

to access QuickBooks.

Usage

This method is used before the call to BeginSession.

Example (Visual Basic)

Dim qbXMLCOM as QBXMLRP2Lib2.RequestProcessor2

Dim prefs As QBXMLRP2Lib.AuthPreferences

Set prefs = qbXMLCOM.AuthPreferences

prefs.PutUnattendedModePref umpOptional

556 Appendix D: qbXML RequestProcessor Method Reference

(c) 2013 Intuit Inc. All rights reserved.

MajorVersion

HRESULT MajorVersion([[out, retval] short* pMajorVersion);

Returns the major version number of the qbXML Request Processor.

Parameters

pMajorVersion Pointer to the returned major version number of the qbXML Request

Processor.

Usage

For version 4.0, the major version number of the qbXML Request Processor is 4.

Example (Visual Basic)

Dim qbXMLRP as QBXMLRP2Lib.RequestProcessor2

Dim iMajorVersion as integer

iMajorVersion = qbXMLRP.MajorVersion

MinorVersion 557

(c) 2013 Intuit Inc. All rights reserved.

MinorVersion

HRESULT MinorVersion([out, retval] short* pMinorVersion);

Returns the minor version number of the qbXML Request Processor.

Parameters

pMinorVersion Pointer to the returned minor version number of the qbXML Request

Processor.

Usage

For version 4.0, the minor version number of the qbXML Request Processor is 0.

Example (Visual Basic)

Dim qbXMLRP as QBXMLRP2Lib.RequestProcessor2

Dim iMinorVersion as integer

iMinorVersion = qbXMLRP.MinorVersion

558 Appendix D: qbXML RequestProcessor Method Reference

(c) 2013 Intuit Inc. All rights reserved.

OpenConnection2

HRESULT OpenConnection2([IN], BSTR appID,

[IN], BSTR appName,

[IN], BSTR connPref);

Opens a connection of the specified type between QuickBooks and the client application. During

this process, QuickBooks checks whether your application contains a valid digital signature, which

indicates that the application has been certified as trusted. Depending on whether the application is

certified or not, QuickBooks presents a different login interface to the user.

Parameters

appId The appID enables QuickBooks to identify your application. This

value can also be NULL or an empty string.

appName Name that identifies the application. This parameter cannot be NULL

or an empty string. The application name is always used in the log

file.

connPref The type of connection that is to be made. Specify localQBD if the

connection is to QuickBooks running locally. Specify

localQBDLaunchUI to launch the QuickBooks user interface (a user

will be required to log in, if passwording is in effect). Specify

remoteQBD if using RDS (this also allows you to force an RDS

connection even if QuickBooks Pro or Premier is installed locally).

Usage

For QuickBooks 2005 and later, QuickBooks uses the application name to identify your application

during the QuickBooks authentication process whether your application is signed or unsigned.

NOTE

QuickBooks always uses the application name in the
qbsdklog.txt log file, regardless of whether your application is
certified.

For QuickBooks versions earlier than QuickBooks 2004, if your application does not have a

digitally signed certificate, QuickBooks uses the application name to identify your application

during the QuickBooks authentication process. If your application does have a certificate,

QuickBooks instead uses the description from the certification whenever it needs to refer to your

application.

When you are finished with all QuickBooks operations, you must call CloseConnection.

Example (Visual Basic)

Set qbXMLCOM = New QBXMLRP2Lib.RequestProcessor2

qbXMLCOM.OpenConnection2 “MyAppID”, “MyAppName”, localQBD

ProcessRequest 559

(c) 2013 Intuit Inc. All rights reserved.

ProcessRequest

HRESULT ProcessRequest([in] BSTR ticket,

[in] BSTR qbXMLIn,

[out, retval] BSTR* qbXMLOut);

Sends the request message set to QuickBooks for processing and receives the corresponding

response message set from QuickBooks.

Parameters

ticket Handle for the current session. (This ticket is returned by the

BeginSession method.)

qbXMLIn Text stream containing the qbXML request message set to be

processed by QuickBooks.

qbXMLOut Pointer to the returned qbXML response message set from

QuickBooks. The memory for this string is allocated on behalf of

your application; however, it is your application’s responsibility to

release the memory when it is finished using it.

Usage

The ProcessRequest method sends the request message set to QuickBooks. It waits while

QuickBooks validates your qbXML document, processes the requests, and creates the response

qbXML document. Upon successful return of this method, the qbXMLOut parameter contains the

response from QuickBooks.

You may want to validate the qbXML text stream contained in the qbXMLIn parameter before you

issue this request. The SDK contains an example of an external qbXML validation tool that you can

use during the design and development phases of your application. Later, you may want to build a

qbXML validator into your application.

Example (Visual Basic)

Dim qbXMLRP as QBXMLRP2Lib.RequestProcessor2

Dim strXMLResponse as String

strXMLResponse = qbXMLRP.ProcessRequest(strTicket, strXMLRequest)

560 Appendix D: qbXML RequestProcessor Method Reference

(c) 2013 Intuit Inc. All rights reserved.

ProcessSubscription

HRESULT ProcessSubscription([in] BSTR qbXMLIn,

[out, retval] BSTR* qbXMLOut);

Sends the request message set to QuickBooks for processing and receives the corresponding

response message set from QuickBooks.

Parameters

qbXMLIn Text stream containing the qbXML subscription request message set

to be processed by QuickBooks. For information on how to build

subscriptions, refer to the Onscreen Reference (OSR) and the

Concepts manual.

qbXMLOut Pointer to the qbXML response message set returned from

QuickBooks. The memory for this string is allocated on behalf of

your application; however, it is your application’s responsibility to

release the memory when it is finished using it.

Usage

The ProcessSubscription method does not require a session ticket because it does not require

QuickBooks to be running. (But you must call OpenConnection or OpenConnection2 before you

call ProcessSubscription.) The subscription goes into effect the next time QuickBooks is started.

This method sends the subscription request message set to QuickBooks. It waits while QuickBooks

validates your qbXML document, processes the requests, and creates the response qbXML

document. Upon successful return of this method, the qbXMLOut parameter contains the response

from QuickBooks.

You may want to validate the qbXML text stream contained in the qbXMLIn parameter before you

issue this request. The SDK contains an example of an external qbXML validation tool that you can

use during the design and development phases of your application. Later, you may want to build a

qbXML validator into your application.

Example (Visual Basic)

Dim qbXMLRP as QBXMLRP2Lib.RequestProcessor2

Dim strXMLResponse as String

strXMLResponse = qbXMLRP.ProcessSubscription(qbXMLIn)

QBXMLVersionsForSession 561

(c) 2013 Intuit Inc. All rights reserved.

QBXMLVersionsForSession

HRESULT QBXMLVersionsForSession([in] BSTR ticket,

[out, retval] SAFEARRAY (BSTR)** ppsa);

Returns an array containing the version numbers of the DTDs supported by the Request Processor.

Note that this information may be different from the information returned by a Host Query request,

as described in the Concepts Manual. HostQuery returns the complete list of all qbXML versions

supported by the currently open connection, which is usually the information your application will

require.

Parameters

ticket Session ticket (returned by BeginSession).

ppsa Pointer pointer to an array of binary strings that specify the versions

of the qbXML specification that are supported by the QuickBooks

Request Processor. For example, the array contains 1.0, 1.1, 2.0, and

2.1, 3.0, 4.0, and 5.0 if your application is using QBXMLRP2 from

QuickBooks 2006, U.S. edition. It contains “CA3.0” if it is using the

Request Processor from the latest Canadian edition of QuickBooks.

Usage

Your application is responsible for freeing the memory used for the ppsa array. For example, to

release the memory for the array when using the C++ language, call SafeArrayDestroy(ppsa).

Example (Visual Basic)

Dim qbXMLRP as QBXMLRP2Lib.RequestProcessor2

Dim strXMLVersionsArray() as String

strXMLVersionsArray = qbXMLRP.QBXMLVersionsForSession(strTicket)

562 Appendix D: qbXML RequestProcessor Method Reference

(c) 2013 Intuit Inc. All rights reserved.

QBXMLVersionsForSubscription

HRESULT QBXMLVersionsForSubscription([out, retval] SAFEARRAY (BSTR)**

ppsa);

Returns an array containing a list of the qbXML versions that are available for a subscription

request.

Parameters

ppsa Pointer pointer to an array of binary strings that specify the versions

of the qbXML specification that are supported by QBXMLRP2. For

example, QBXMLRP2 for QuickBooks 2005 would return 3.0 and

4.0. It contains “CA2.0” if it is using the Request Processor from the

Canadian edition of QuickBooks version 2.0.

Usage

See the Onscreen Reference (OSR) and the Concepts manual for details about subscription

versioning.

Your application is responsible for freeing the memory used for the ppsa array. For example, to

release the memory for the array when using the C++ language, call SafeArrayDestroy(ppsa).

Example (Visual Basic)

Dim qbXMLRP as QBXMLRP2Lib.RequestProcessor2

Dim strXMLVersionsArray() as String

strXMLVersionsArray = qbXMLRP.QBXMLVersionsForSession()

ReleaseLevel 563

(c) 2013 Intuit Inc. All rights reserved.

ReleaseLevel

HRESULT ReleaseLevel

([out, retval] QBXMLRPReleaseLevel* pReleaseLevel);

Returns the release level of the qbXML Request Processor.

Parameters

pReleaseLevel Pointer to the returned release level. This value can be preAlpha,

alpha, beta, or release.

Example (Visual Basic)

Dim qbXMLRP as QBXMLRP2Lib.RequestProcessor2

Dim ReleaseLevel as QBXMLRP2Lib.QBXMLRPReleaseLevel

ReleaseLevel = qbXMLRP.ReleaseLevel

564 Appendix D: qbXML RequestProcessor Method Reference

(c) 2013 Intuit Inc. All rights reserved.

ReleaseNumber

HRESULT ReleaseNumber([out, retval] short* pReleaseNumber);

Returns the release number of the qbXML Request Processor.

Parameters

pReleaseNumber Pointer pointer to the number that identifies the release of the

qbXML Request Processor.

Usage

The release number varies with each build of the product software. A major bug fix or a new feature

might be reflected in the release number. Your application may need to check the release number to

determine if a certain feature is supported.

Example (Visual Basic)

Dim qbXMLRP as QBXMLRP2Lib.RequestProcessor2

Dim iReleaseNumber as integer

iReleaseNumber = qbXMLRP.ReleaseNumber

Enterprise Features Requiring Single User Mode 565

(c) 2013 Intuit Inc. All rights reserved.

APPENDIX E 1

ENTERPRISE EDITION AND SINGLE/MULTI-USER ISSUES 1

This appendix lists the Enterprise features that require single mode, and those that support

multuser mode.

Enterprise Features Requiring Single User Mode

The following table lists single mode features:

Backup

Condense

Accountant Review (import/export, create/merge, Use/continue/
cancel)

Easy Step interview

Rebuild

IIF Import/Export

Change Employee List Sort

Change company info

Regen Item History

Timer Import/Export

Changing Company Prefs

Using TaxLink

Change Check Logo

Print 1099’s

Setting Employee defaults

Finance charge settings

Online banking migration

Payroll checkup

Payroll payserv signup

Payroll payserv payroll setup

Common payroll setup

Change email/fax message template

HR signup

Create or restore Portable company file

566 Appendix E: Enterprise Edition and Single/Multi-User Issues

(c) 2013 Intuit Inc. All rights reserved.

Enterprise List Operations Requiring Single User Mode

The following table shows the List operations that require single user mode:

Enterprise Multi User Features

The following features support multiuser mode:

Validate

Resort

Change sublevel

Change parent

Custom fields

Changes COGS account

Change post account

Change bal sheet account

Change inventory account

Change reimbursement account

Change expense account

Change payitem account

Change tax agency

Rearrange order

Change name

Select subcontractor for service

Make an account a subaccount

Change email/fax message template

Budgets

Forecasts

Make deposits

Payroll

Print statements

Pay bills

Pay taxes

Assess finance charges

Online banking

Place standing txns

Write letters

Download payments

Inventory change

Reconcile by account

Print checks by account

Select PO by vendor

Enterprise Multi User Features 567

(c) 2013 Intuit Inc. All rights reserved.

Item history by item

Select estimate by customer

Select sales order by customer

Change inventory acct

Item adjustment (i.e. Change QOH for inventory)

Change sales tax rate

List deletes

Verify (unless verifying a single user feature)

Budgets

568 Appendix E: Enterprise Edition and Single/Multi-User Issues

(c) 2013 Intuit Inc. All rights reserved.

Overpayments and Refunds 569

(c) 2013 Intuit Inc. All rights reserved.

APPENDIX F 1

OVERPAYMENTS AND REFUNDS 1

This appendix contains an AlphaGeek article that contains information we think would be

useful to repeat here in the Programmer’s Guide. Enjoy!

Overpayments and Refunds

Here’s the scenario: Your client owns Rock Castle Construction. Renee Barley hired your

client to do $900 of work (installing drywall: a tedious job that she was happy to hire out).

Renee pays $1000. Whoops, that’s a $100 overpayment:

570 Appendix F: Overpayments and Refunds

(c) 2013 Intuit Inc. All rights reserved.

Notice that QuickBooks points out the overpayment! We don’t know what Renee had in

mind, so we’ll leave the overpayment as a credit. Notice that QuickBooks will offer to print

a credit memo. It would be the right thing to do, but notice that even if you do choose to

print a Credit Memo for Renee, you won’t be able to find a credit memo transaction for

Renee, what gets printed is just something that we can give Renee to ensure that she can

remind us that she overpaid us by $100.

That’s because a QuickBooks credit memo transaction is, in the words of the QuickBooks

help file for when a customer returns items for which you have already recorded an invoice,

customer payment, or sales receipt and you or the customer wish to retain the value of the

returned goods as a credit for use in future transactions (as opposed to refunding

immediately). That’s not the situation we have here, nothing is being returned. So

regardless of how we respond to the following dialog:

Overpayments and Refunds 571

(c) 2013 Intuit Inc. All rights reserved.

Renee winds up with a $100 credit:

572 Appendix F: Overpayments and Refunds

(c) 2013 Intuit Inc. All rights reserved.

The Manual Solution

Rock Castle Construction now must refund this overpayment manually. In our example the

payment is already deposited, so we can’t delete the overpayment and try to correct the

problem.

If you were to guess, you might guess that you could just create a credit memo now, after

all it was the failure to do that which resulted in this problem. BUT, that’s not the right

answer. Doing so would give you a $200 credit! That would be double the problem.

So instead, we go to the Write Checks window. Create a check to Renee Barley for

$100.00. Use an expense line with Account = Accounts Receivable and Customer:Job =

Renee Barley.

This will do the right thing with the balance on Renee’s account (it will return to $0.00).

However that this doesn’t update the credit on the original payment transaction. Let’s look

at that payment:

The Manual Solution 573

(c) 2013 Intuit Inc. All rights reserved.

Here in the QuickBooks user interface, what we really want is to apply the payment to the

check transaction we see there by adding it to the payment receipt we have. We can just add

a check mark to the refund check line in this payment receipt, but if the payment has

already been deposited some accountants may take issue with the modification of this

payment receipt.

So there’s another way to patch up the QuickBooks confusion here by clearing out the

discounts & credits. We start by creating a new Payment Receipt for Renee:

574 Appendix F: Overpayments and Refunds

(c) 2013 Intuit Inc. All rights reserved.

Note that QuickBooks correctly sees the refund check we wrote earlier for the Accounts

Receivable expense. We want to apply the overpayment credit to this refund check so we

click Discount & Credits:

The Manual Solution 575

(c) 2013 Intuit Inc. All rights reserved.

The credit is already selected, so we just click Done.

576 Appendix F: Overpayments and Refunds

(c) 2013 Intuit Inc. All rights reserved.

We now have a payment for $0 that applies to nothing, but notice that the Customer has

credits available message is no longer present. Click Save & Close because this is a

transaction for $0.00 nothing actually posts, just like no credit memo was created earlier, no

new payment receipt is created, but if we check the original transaction again, we can see

that the credit that we refunded is now cleaned up:

Taking it to the SDK 577

(c) 2013 Intuit Inc. All rights reserved.

Excellent, the overpayment portion is gone. Even more importantly, that extra receive

payment we just did, which wasn’t really a payment receipt won’t show up on any

transaction lists, it really just cleaned up a quirk of the QuickBooks business logic.

Taking it to the SDK

Blissfully you think you’ve got this problem licked, so you charge into writing an

application to solve this for your client. But the details of doing this programmatically are a

little more exposed. And the functionality in this area has improved which means you need

different solutions if you need to support older versions of QuickBooks L.

Lets start with QuickBooks 2005 since a good number of clients would have access to this

functionality by now.. In QB2005 we have ARRefundCreditCardAdd (for credit card

refund) and CheckAdd (for check refund). Let’s see what happens when we use those.

578 Appendix F: Overpayments and Refunds

(c) 2013 Intuit Inc. All rights reserved.

<?xml version="1.0" ?>

<?qbxml version="2.0"?>

<QBXML>

<QBXMLMsgsRq onError="stopOnError">

<CheckAddRq>

<CheckAdd>

<AccountRef>

<FullName>Checking</FullName>

</AccountRef>

<PayeeEntityRef>

<FullName>Barley, Renee</FullName>

</PayeeEntityRef>

<TxnDate>2007-12-15</TxnDate>

<Memo>Refund for overpayment</Memo>

<IsToBePrinted>1</IsToBePrinted>

<ExpenseLineAdd>

<AccountRef>

<FullName>Accounts Receivable</FullName>

</AccountRef>

<Amount>100.00</Amount>

<CustomerRef>

<FullName>Barley, Renee</FullName>

</CustomerRef>

</ExpenseLineAdd>

</CheckAdd>

</CheckAddRq>

</QBXMLMsgsRq>

</QBXML>

When we send this to the request processor with QB 2005 or greater we get:

<?xml version="1.0" ?>

<QBXML>

<QBXMLMsgsRs>

<CheckAddRs statusCode="0" statusSeverity="Info" statusMessage="Status OK">

<CheckRet>

<TxnID>5BBE-1197738754</TxnID>

<TimeCreated>2007-12-15T09:12:34-08:00</TimeCreated>

<TimeModified>2007-12-15T09:12:34-08:00</TimeModified>

<EditSequence>1197738754</EditSequence>

<TxnNumber>1261</TxnNumber>

<AccountRef>

<ListID>20000-933270541</ListID>

<FullName>Checking</FullName>

</AccountRef>

<PayeeEntityRef>

<ListID>920000-1071506140</ListID>

<FullName>Barley, Renee</FullName>

</PayeeEntityRef>

<TxnDate>2007-12-15</TxnDate>

<Amount>100.00</Amount>

<Memo>Refund for overpayment</Memo>

<Address>

Taking it to the SDK 579

(c) 2013 Intuit Inc. All rights reserved.

<Addr1>Renee Barley</Addr1>

<Addr2>4417 N. Sun Valley Rd</Addr2>

<City>Middlefield</City>

<State>CA</State>

<PostalCode>94471</PostalCode>

</Address>

<IsToBePrinted>true</IsToBePrinted>

<ExpenseLineRet>

<TxnLineID>5BC0-1197738754</TxnLineID>

<AccountRef>

<ListID>40000-933270541</ListID>

<FullName>Accounts Receivable</FullName>

</AccountRef>

<Amount>100.00</Amount>

<CustomerRef>

<ListID>920000-1071506140</ListID>

<FullName>Barley, Renee</FullName>

</CustomerRef>

</ExpenseLineRet>

</CheckRet>

</CheckAddRs>

</QBXMLMsgsRs>

</QBXML>

But look at the Customer Payment:

580 Appendix F: Overpayments and Refunds

(c) 2013 Intuit Inc. All rights reserved.

Whoa! Look at that! Someone could still come along and issue a refund! The problem is the

same as when we did it manually. It turns up we need that Apply Credits magic.

Those of you who remember our discussion of this situation in the QuickBooks UI will see

that the problem for the SDK is that there’s actually no transaction for that credit, even if

we printed a credit memo, that means there’s no TxnID we can use in the

ReceivePaymentAdd request’s SetCredit aggregate.

Before QuickBooks 2007, we really have only two options.

Option 1: Prevent the situation from happening in the first place by recognizing an

overpayment before we recording it from our application and generate a refund check first,

then record the payment receipt, applying the payment to the original invoice and the

refund check all at once (note that in the example below we’re also recording the invoice,

that’s just to provide a functional request that doesn’t require the AlphaGeek to magically

anticipate the TxnID of the invoice):

<?xml version="1.0" ?>

<?qbxml version="4.0" ?>

<QBXML>

<QBXMLMsgsRq onError = "stopOnError">

<InvoiceAddRq requestID = "0">

<InvoiceAdd defMacro="TxnID:INV1">

Taking it to the SDK 581

(c) 2013 Intuit Inc. All rights reserved.

<CustomerRef>

<FullName>Barley, Renee</FullName>

</CustomerRef>

<InvoiceLineAdd>

<ItemRef>

<FullName>Install Drywall</FullName>

</ItemRef>

<Quantity>1</Quantity>

<Rate>900.00</Rate>

<SalesTaxCodeRef>

<FullName>Non</FullName>

</SalesTaxCodeRef>

</InvoiceLineAdd>

</InvoiceAdd>

</InvoiceAddRq>

<CheckAddRq>

<CheckAdd defMacro="TxnID:Check1">

<AccountRef>

<FullName>Checking</FullName>

</AccountRef>

<PayeeEntityRef>

<FullName>Barley, Renee</FullName>

</PayeeEntityRef>

<Memo>Refund</Memo>

<ExpenseLineAdd>

<AccountRef>

<FullName>Accounts Receivable</FullName>

</AccountRef>

<Amount>100.00</Amount>

<CustomerRef>

<FullName>Barley, Renee</FullName>

</CustomerRef>

</ExpenseLineAdd>

</CheckAdd>

</CheckAddRq>

<ReceivePaymentAddRq>

<ReceivePaymentAdd>

<CustomerRef>

<FullName>Barley, Renee</FullName>

</CustomerRef>

<TotalAmount>1000.00</TotalAmount>

<AppliedToTxnAdd>

<TxnID useMacro="TxnID:INV1" />

<PaymentAmount>900.00</PaymentAmount>

</AppliedToTxnAdd>

<AppliedToTxnAdd>

<TxnID useMacro="TxnID:Check1" />

<PaymentAmount>100.00</PaymentAmount>

582 Appendix F: Overpayments and Refunds

(c) 2013 Intuit Inc. All rights reserved.

</AppliedToTxnAdd>

</ReceivePaymentAdd>

</ReceivePaymentAddRq>

</QBXMLMsgsRq>

</QBXML>

Option 2. Recognize the situation has occurred and guide the user through fixing it by

adding the refund check to QuickBooks, then use TxnDisplayMod to bring up the payment

receipt in the QuickBooks user interface and ask the user to add a check mark next to the

refund check in the apply to transaction list of the payment form.

QuickBooks 2007 to the Rescue!

While the first solution proposed is reasonable if it is feasible for your application to detect

the overpayment situation when its happening, the reality is that many times your

application won’t have the omniscient view of QuickBooks data and the user’s intent that is

required to apply it reliably.

Fortunately, the situation gets considerably better with QuickBooks 2007, we can record the

payment as usual, applying it to the invoice and getting stuck with a $100 credit balance for

Renee:

<?xml version="1.0" ?>

<?qbxml version="6.0" ?>

<QBXML>

<QBXMLMsgsRq onError = "stopOnError">

<ReceivePaymentAddRq>

<ReceivePaymentAdd>

<CustomerRef>

<FullName>Barley, Renee</FullName>

</CustomerRef>

<TotalAmount>1000.00</TotalAmount>

<AppliedToTxnAdd>

<TxnID useMacro="TxnID:INV1" />

<PaymentAmount>900.00</PaymentAmount>

</AppliedToTxnAdd>

</ReceivePaymentAdd>

</ReceivePaymentAddRq>

</QBXMLMsgsRq>

</QBXML>

Then at some later time we can record a check to refund Renee:

<?xml version="1.0" ?>

<?qbxml version="4.0" ?>

<QBXML>

<QBXMLMsgsRq onError = "stopOnError">

<CheckAddRq>

QuickBooks 2007 to the Rescue! 583

(c) 2013 Intuit Inc. All rights reserved.

<CheckAdd defMacro="TxnID:Check1">

<AccountRef>

<FullName>Checking</FullName>

</AccountRef>

<PayeeEntityRef>

<FullName>Barley, Renee</FullName>

</PayeeEntityRef>

<Memo>Refund</Memo>

<ExpenseLineAdd>

<AccountRef>

<FullName>Accounts Receivable</FullName>

</AccountRef>

<Amount>100.00</Amount>

<CustomerRef>

<FullName>Barley, Renee</FullName>

</CustomerRef>

</ExpenseLineAdd>

</CheckAdd>

</CheckAddRq>

</QBXMLMsgsRq>

</QBXML>

A quick TransactionQuery request shows us the situation as it stands with Renee at this

point:

<QBXML>

<QBXMLMsgsRs>

<TransactionQueryRs statusCode="0" statusSeverity="Info" statusMessage="Status OK">

<TransactionRet>

<TxnType>Invoice</TxnType>

<TxnID>5C29-1197706889</TxnID>

<TimeCreated>2007-12-15T00:21:29-08:00</TimeCreated>

<TimeModified>2007-12-15T00:21:29-08:00</TimeModified>

<EntityRef>

<ListID>920000-1071506140</ListID>

<FullName>Barley, Renee</FullName>

</EntityRef>

<AccountRef>

<ListID>40000-933270541</ListID>

<FullName>Accounts Receivable</FullName>

</AccountRef>

<TxnDate>2007-12-15</TxnDate>

<RefNumber>94</RefNumber>

<Amount>900.00</Amount>

</TransactionRet>

<TransactionRet>

<TxnType>ReceivePayment</TxnType>

<TxnID>5C2D-1197706923</TxnID>

584 Appendix F: Overpayments and Refunds

(c) 2013 Intuit Inc. All rights reserved.

<TimeCreated>2007-12-15T00:22:03-08:00</TimeCreated>

<TimeModified>2007-12-15T00:22:03-08:00</TimeModified>

<EntityRef>

<ListID>920000-1071506140</ListID>

<FullName>Barley, Renee</FullName>

</EntityRef>

<AccountRef>

<ListID>80000-933270541</ListID>

<FullName>Undeposited Funds</FullName>

</AccountRef>

<TxnDate>2007-12-15</TxnDate>

<Amount>1000.00</Amount>

</TransactionRet>

<TransactionRet>

<TxnType>Check</TxnType>

<TxnID>5C32-1197706965</TxnID>

<TimeCreated>2007-12-15T00:22:45-08:00</TimeCreated>

<TimeModified>2007-12-15T00:22:45-08:00</TimeModified>

<EntityRef>

<ListID>920000-1071506140</ListID>

<FullName>Barley, Renee</FullName>

</EntityRef>

<AccountRef>

<ListID>20000-933270541</ListID>

<FullName>Checking</FullName>

</AccountRef>

<TxnDate>2007-12-15</TxnDate>

<RefNumber>304</RefNumber>

<Amount>-100.00</Amount>

</TransactionRet>

</TransactionQueryRs>

</QBXMLMsgsRs>

</QBXML>

The set of transactions above get us into this situation:

QuickBooks 2007 to the Rescue! 585

(c) 2013 Intuit Inc. All rights reserved.

QuickBooks 2007 and SDK 6.0 add a number of transaction mod requests, including,

fortunately, ReceivePaymentMod, so we can use the SDK to modify that payment receipt

(TxnID 5C2D-1197706923) to apply it to the check as well:l:

<?xml version="1.0"?>

<?qbxml version="6.0"?>

<QBXML>

<QBXMLMsgsRq onError="continueOnError">

<ReceivePaymentModRq requestID="1">

<ReceivePaymentMod>

<TxnID>5C2D-1197706923</TxnID>

<EditSequence>1197706923</EditSequence>

<AppliedToTxnMod>

<TxnID>5C29-1197706889</TxnID>

<PaymentAmount>900.00</PaymentAmount>

</AppliedToTxnMod>

<AppliedToTxnMod>

<TxnID>5C32-1197706965</TxnID>

<PaymentAmount>100.00</PaymentAmount>

</AppliedToTxnMod>

</ReceivePaymentMod>

586 Appendix F: Overpayments and Refunds

(c) 2013 Intuit Inc. All rights reserved.

</ReceivePaymentModRq>

</QBXMLMsgsRq>

</QBXML>

Checking the QuickBooks UI we see that we got exactly what we were after:

Which we can also see in the response from the ReceivePaymentMod request:

<QBXML>

<QBXMLMsgsRs>

<ReceivePaymentModRs requestID="1" statusCode="0" statusSeverity="Info"

statusMessage="Status OK">

<ReceivePaymentRet>

<TxnID>5C2D-1197706923</TxnID>

<TimeCreated>2007-12-15T00:22:03-08:00</TimeCreated>

<TimeModified>2007-12-15T01:01:10-08:00</TimeModified>

<EditSequence>1197709270</EditSequence>

<TxnNumber>1266</TxnNumber>

<CustomerRef>

<ListID>920000-1071506140</ListID>

<FullName>Barley, Renee</FullName>

Conclusion 587

(c) 2013 Intuit Inc. All rights reserved.

</CustomerRef>

<ARAccountRef>

<ListID>40000-933270541</ListID>

<FullName>Accounts Receivable</FullName>

</ARAccountRef>

<TxnDate>2007-12-15</TxnDate>

<TotalAmount>1000.00</TotalAmount>

<DepositToAccountRef>

<ListID>80000-933270541</ListID>

<FullName>Undeposited Funds</FullName>

</DepositToAccountRef>

<UnusedPayment>0.00</UnusedPayment>

<UnusedCredits>0.00</UnusedCredits>

<AppliedToTxnRet>

<TxnID>5C29-1197706889</TxnID>

< TxnType>Invoice</TxnType>

<TxnDate>2007-12-15</TxnDate>

<RefNumber>94</RefNumber>

<BalanceRemaining>0.00</BalanceRemaining>

<Amount>900.00</Amount>

</AppliedToTxnRet>

<AppliedToTxnRet>

<TxnID>5C32-1197706965</TxnID>

<TxnType>Check</TxnType>

<TxnDate>2007-12-15</TxnDate>

<RefNumber>304</RefNumber>

<BalanceRemaining>0.00</BalanceRemaining>

<Amount>100.00</Amount>

</AppliedToTxnRet>

</ReceivePaymentRet>

</ReceivePaymentModRs>

</QBXMLMsgsRs>

</QBXML>

Conclusion

The handling of overpayments has long been a topic of confusion for QuickBooks users

and developers alike (not to mention the AlphaGeek). We hope that this in-depth

exploration of the issues associated with overpayments in QuickBooks and how to handle

them in the SDK will be helpful to everyone. ReceivePaymentMod is but one of many new

requests from SDK 6.0, the AlphaGeek says Check it Out!

588 Appendix F: Overpayments and Refunds

(c) 2013 Intuit Inc. All rights reserved.

Index 1

(c) 2013 Intuit Inc. All rights reserved.

A
Access Rights window 54
access, to personal data 489
account balances 503
account filter

example of 88
account filters 166
account/subaccount elements 164
AccountAdd object 168
AccountAddRq 31, 168
AccountAddRs 168
AccountRet object 168
AccountType filter 85
accrual basis 107
ActiveStatus 502
ActiveStatus filter 82
Add request

example 168
Add response

example 169
adding objects 168
administrator, QuickBooks

and application authorization 35
and permissions 488
and personal data 489

advantages, of single-user mode 55
aggregate 31
aggregates 31
Aging reports 95, 104

valid options for 115
AllowCustomerTaxCodes elements 535
AmountIncludesVAT elements 535
API

choice of 19, 31
appID parameter (application ID)

in OpenConnection 446
application

error handling 491
log file for 491
name 558

AppliedToTxnAdd 219
AppliedToTxnAdd aggregate 218, 220
AppliedToTxnRet aggregate 221
AppliedToTxnRet object 219, 227

lean vs. full forms of 219
applying credits 217
applying discounts 217
applying payments 217
applying payments automatically 220
appName parameter

in OpenConnection 446
attributes 31

responseData 171
Attributes. See also oldMessageSetID, newMes-
sageSetID, onError, responseData, messageSet-
StatusCode
audience

for this manual 19
authentication 543
auto-applying payments 220
auto-login

limitations for 53
permissions for 53, 488
user 488

auto-login to QuickBooks 51
automated error recovery

about 404
and query requests 405
steps for using 404

B
balance 169
bank account number, allowing access to 54
basis

for reports 107
BeginSession method 541

checks and tasks 47
best practices 481
bill 225
bill credit objects 218
bill payment

example of an error in 228
examples of 227

bill payment objects 225
bill payment transactions 217, 224
BillPaymentCheckAdd 225
BillPaymentCheckAdd request 217
BillPaymentCreditCardAdd 225
BillPaymentCreditCardAdd request 217
bills 218

paying 224
BillToPayQuery 90, 217, 225

example of 225
BillTxnList 227
BudgetSummaryReportQueryRq 99, 114

C
Canadian edition, of QuickBooks 561, 562

about 532
Currency list in 536
Tax Code list in 535

Canadian editions of QuickBooks
about 532
Tax Code list in 535

Canadian form of qbXML 536

2 Index

(c) 2013 Intuit Inc. All rights reserved.

Canadian version
subscribing to UI events 200

cash basis 107
ChargeTax1 elements 535
ChargeTax2 elements 535
check 224
CheckAdd request

with error recovery 406
CheckAdd response

status check 407
checking the version of QuickBooks 23
checklist

for working with multiple versions of Quick-
Books 494

checks 220
checksum 408
children

of list elements 160
class/subclass elements 164
cleared status 157
ClearedStatus column 110
clearing error recovery records 411
clearing state 409

in QuickBooks 405
CloseConnection method 545
closed transactions 135
closing a bill 227
closing date 135
Code elements (currency code) 536
ColData field 109
column descriptor 107, 108
column ID 107, 109
column types 108

and corresponding data types (table) 105
columns

number of 107
COM API

for QBFC 31
COM interface 45
communicating with QuickBooks

methods for 539
company 159
company file 543, 547

problems opening 486
restoring 499, 500
storing data securely 481

CompanyActivityQuery 90
CompanyActivityQueryRq 500
CompanyQuery 90
comparing requests 408
comparison of Balance and TotalBalance 169
comparison of SDK APIs 24

concepts
for QuickBooks SDK 31

contents
of this manual 19

continueOnError 171
CreateMsgSetRequest method 432
creating links 219

example of 222
credit 225

applying 223
credit card 224
credit card numbers, allowing access to 54
credit memos 218
credits 217, 219, 225

applying 217
creating vs. setting 218
setting 226

credits, setting 221
Currency list objects 536
CurrencyHotKey elements 536
Custom Detail reports 104
custom reports 101

summary and detail 98
CustomDetailReportQueryRq 98
customer list

example of 165
customer/job elements 164
CustomerRef 219
CustomSummaryReportQueryRq 98

D
data

synchronizing between QuickBooks and your
application 499

data row
in reports 109

data types
and corresponding column types (table) 105

DataEventSubscriptionAddRq 178
DataExtAddRq 147
DataExtDefDelRq 148
DataExtDelRq 148
DataExtModRq 147
dataType 108
date element

in custom reports 98
date filters

for transactions 86
date macro

in filters 87
date range filter

example of 87, 89

Index 3

(c) 2013 Intuit Inc. All rights reserved.

dates range
for reports 100

debits
general journal 220

DecimalPlaces elements 536
DecimalSep elements 536
default reports 98
deleting objects 134
DepositAdd request 217, 230
deposits 217, 230
DepositToAccountRef element 231
differences in time 503
digital signature 481, 558
digital signing

for an application 481
disadvantages, of single-user mode 55
discount

applying 223
DiscountAccountRef 221
DiscountAmount 221
discounts 217, 219

applying 217
setting 227

discounts, setting 221
display conditions 209
DisplayCondition

multiple criteria 210
visible vs. enabled states 210

distributing payments 219
distributing your application 396, 505
documentation

for your application 488
provided with the SDK 23

documentation roadmap 19
DoRequests method 403, 411, 483
DoRequestsFromXMLString method 435

E
editing 135
EditSequence 125, 168
element 31
elements

optional vs. required 168
that use macros 157

employee’s salary, fields for 54
EmuRate elements 536
encryption 481
endless loop 406
EndSession method 439, 546
end-users

and error recovery process 486
informing of errors needing intervention 485

entity filter 115
example of 87, 89

entity filters 87, 166
error codes 491
error codes (HRESULTs) 515
error conditions 403
error entries

in log file 493
error recovery 169, 489

attributes for 172
clearing records for 411
completing before upgrading 487
example of 406
loop, breaking out of 487
rationale for including 403
routine 403
status codes and 408
steps for using 405
summary of 410
when to invoke 403

error recovery (QBFC)
about 404
and query requests 405
steps for using 404

error status message 173
European currencies 536
ExchangeRate elements 536
exclusive access, to QuickBooks 55

F
file access mode 47
filters 76, 166, 170, 481

AccountType 85
ActiveStatus 82
by date modified 82
date 86
date macro in 87
date range 89
entity 87, 89
for lists 81
for reports 103, 104
for transactions 86
FullName 81
ListID 81
modification date 86
multiple 170
PaidStatus 90
reference number 89
TotalBalance 85

FLOATTYPE data type 536
ForeignPrice elements 536
FromModifiedDate

4 Index

(c) 2013 Intuit Inc. All rights reserved.

in filters 82
FromModifiedDate field 500
FromReportDate field 100
full version

AppliedToTxnRet 219
FullName 162, 164

example of queries for 166
format of 164
in entity filters 87
maximum length of 164
vs. ListID 166

FullName filter 81
FullNameWithChildren 166
functional groupings

for lists 160
for transactions 161

G
General Detail reports 96, 101, 104

valid options for 117
general journal 227
general journal debits 220
General Summary reports 94

valid options for 118
generating reports

practical approach 99
GetCurrentCompanyFileName 482
GetCurrentCompanyFileName method 441, 487,
547
GetVersion method 444

H
helper queries 217
helper query 225
hierarchical lists 164, 165
hierarchical relationships 167
history

of a transaction 218
host 159
HostQuery 90
HostQuery request 170
HRESULT error codes table 515
HRESULTs 491

requiring error recovery 403

I
identifiers 162
identifying requests 408
IDs

for transactions 161
IErrorInfo interface 515
IncludeColumn field 104
IncludeLineItems flag 90

IncludeLinkedTxns flag 90, 218, 223
IncludeSubcolumns field 100, 101
incompatible versions

of QuickBooks and application 485
QuickBooks and company file 486

informational entries
in log file 493

informative status message 172
Integrated Applications icon, in QuickBooks 489
integrated applications, changing name of 487
integrating with QuickBooks 19
interactive login to QuickBooks 51
Intuit Developer Support 483
inventory items 503
inventory units, not supported via SDK 537
invoice query

example of 87
InvoiceAddRq 244, 347, 364
InvoiceModRq 347
InvoiceQueryRq 218
InvoiceRet 218
invoices 218, 220

by customer list 165
invoking error recovery routine 403
IsAutoApply 219
IsAutoApply flag 220
IsECVatCode elements 536
IsEmu elements 536
IsPiggyBackRate elements 535
IsTax1Exempt elements 535
IsTax2Exempt elements 535
IsUsingForeignPricesOnItems elements 536
IsUsingMulticurrency elements 536
IsUsingUnitsOfMeasure elements 536
IsVendorEligibleForT4A elements 535
item filters 166
item inventory query

example of 87
ItemGroupAddRq 345
ItemGroupModRq 345
ItemGroupQueryRq 345
ItemInventoryAddRq 345
ItemInventoryAssemblyAddRq 345
ItemInventoryAssemblyModRq 345
ItemInventoryAssemblyQueryRq 345
ItemInventoryModRq 345
ItemInventoryQueryRq 345
ItemNonInventoryAddRq 345
ItemNonInventoryModRq 345
ItemNonInventoryQueryRq 345
ItemReceiptAddRq 347
ItemReceiptModRq 347

Index 5

(c) 2013 Intuit Inc. All rights reserved.

ItemServiceAddRq 345
ItemServiceModRq 345
ItemServiceQueryRq 345

J
Job reports 95

default vaues for 102
valid options for 115

job/subjob elements 164
JobEstimatesVsActualsDetail report 105
JobProfitabilityDetail report 105
JournalEntryQueryRq 223

K
Kristy Abercrombie 165

L
lean AppliedToTxnRet object 227
lean version

AppliedToTxnRet 219
line items 90
linked transaction 90
linked transactions 135, 218
LinkedTxn aggregate 218
links

creating 219, 222
list elements

names for 164
list filters 81

example of 82
list IDs

unique groupings for 162
ListDeletedQueryRq 500, 503
ListID 125, 134, 162, 168

in entity filters 87
vs. FullName 166

ListID filter 81
ListIDWithChildren 166
lists 159

hierarchical 164, 165
identifiers for 162
parent-child elements in 160
separate groupings for 164
types of 160

locked transactions 135
lockout 55
log file 493

using 493
logging in, problems related to 48
login

mode access 55
modes 488

login modes 488

login modes (in QuickBooks) 51

M
macros 155, 167

elements that use 157
example of defining 156
example of using 155, 156
format of names for 155
name for 156
storage of 155
tagname for 156

MajorVersion 170
MajorVersion method 556
match criterion

used in a query 88
matching name strings

in queries 83
MaxReturned 481
memory 546

freeing 449, 561, 562
merge modules 396, 397, 506
message aggregate 31
message set 30

status code for 491
message set IDs 405
messages 30
messageSetStatusCode 407, 409
methods, API reference for 539
MinorVersion 170
MinorVersion method 557
MissingChecks report 105
mode

single-user 135
modes

login 488
single-user vs. multi-user 54
specifying in BeginSession 543

modification date
in filters 86

modification time
in multi-user mode 503

Modify request
deleting element value in 125

modifying objects 125
monitoring

HRESULTs 492
HTTPS errors 492

MSI (Microsoft Installer) 397, 506
multicurrency 534
multiple filters 170
multiple sessions

versus single session 48

6 Index

(c) 2013 Intuit Inc. All rights reserved.

when to use 49
multi-user mode

and modification time 503
effects of 54
specifying in BeginSession 543

multi-user session 53

N
name

for macros 156
name, for application 558
NameFilter 83
NameRangeFilter 83
names 165

filters for 83
newMessageSetID 171, 405, 408

preserving 411

O
object 31

definition of 159
object references

adding or modifying 167
purposes of 167

object type 134
objects

adding 168
deleting 134
modifying 125
querying for 170
voiding 136

oldMessageSetID 171, 405
onError attribute 171
online banking 224
Onscreen Reference 19, 24, 31, 76, 217
OpenConnection method 446, 486
operation 31
operations

supported by SDK 167
optional elements 168
Order column

in reports 113
out-of-memory conditions 403
overpayment

example of 227
Owner ID 81

P
packaging your application 396, 505
PaidStatus filter 90
parent references 167
password 135
paying a bill 227

paying bills 224
paying two bills

example of 229
payment 225

applying 223
unused 223

payment amounts
and TotalAmount 220

payment method 225
payments 217

applying 217
applying automatically 220
distributing explicitly 219

PaymentTxnID element 230
PaymentTxnLineID elements 230
Payroll Detail reports 101, 104
PayrollDetailReportQueryRq 97
PayrollItemNonWageQueryRq 114
PayrollItemWageQueryRq (114
PayrollSummaryReportQueryRq 97, 114
permissions 48, 488

for auto-login 488
personal data

application access to 54, 489
in reports 113

Post 411
power outages 403
preferences 135, 159
PreferencesQuery 90
PreferencesQueryRq 135
prerequisites

for reading this manual 19
preset reports

in QuickBooks 93
PreviousPeriod subcolumn

in reports 103
PreviousYear subcolumn

in reports 103
problems

helping users to troubleshoot 485
logging in 48
opening company file 486

processing state 171
ProcessRequest method 403, 411, 483, 559
ProductName 170
Profit and Loss report 109
Profit and Loss Standard report 99
prolog

qbXML document 494
Province elements 535
PurchaseByVendorSummary report 105, 115
PurchaseOrderAddRq 347

Index 7

(c) 2013 Intuit Inc. All rights reserved.

PurchaseOrderModRq 347
purchasing units, not supported via SDK 537

Q
QBFC API 24
QBFC Library 31
qbsdklog.txt file 483
qbsdklog.txt log file 493
qbsdklog.txt log file 558
qbXML 31

Canadian form of 536
setting which version a request will use 432
text stream, validating 559, 560

qbXML Request Processor 45
See also Request Processor

qbXML Request Processor API 491
qbXML Request Processor Interface 23, 24
qbXML specification 23
qbxmlops20.xml 217
qbxmlops20.xml sample file 23
qbXMLValidator.exe 483
QBXMLVersionsForSession method 561, 562
queries 159

example with FullName 166
filters for rname ranges 83
for transactions 86
helper 217
match criterion for names 83
requesting additional data 90
ToDo 85

query requests, disabling error recovery before
405
querying for objects 170
querying the Request Processor, methods for
539
QuickBooks

Canadian editions of 532, 561, 562
checking version of 23
company file 45
integrating with 19
multiple installed versions of 486
version 47

QuickBooks administrator
and application authorization 35
and permissions 488
and personal data 489

QuickBooks Foundation Class (QBFC) Library 23
QuickBooks Foundation Class (QBFC) Library.
See QBFC Library
QuickBooks Intuit Parner Platform (IPP) Devel-
oper Support 481
QuickBooks Report Finder 93

R
ranges of names

filtering for in queries 83
RD

client 394
RDS

and new HRESULT messages 400
described 176, 391
distributing applications with 395
no special coding required 399
port 393
QuickBooks support for 400
server 392
what customers need to know 400

RDS (Remote Data Sharing
Remote Data Sharing (RDS) 397

read-only application 403
receive payment 219
receive payment transactions 217, 219
ReceivePaymentAdd object 220, 222
ReceivePaymentAdd request 217, 219
ReceivePaymentAddRq 156, 347
ReceivePaymentModRq 347
ReceivePaymentRet object 223
ReceivePaymentToDeposit 230
ReceivePaymentToDeposit helper query 217
ReceivePaymentToDepositQuery 90
recommended practices 481
redistributing SDK components 396, 505
reference number filters 89
reference numbers

for transactions 161
missing 89

references
parent 167

RefNumber 86, 136, 162
RefNumberFilter 89
RefNumberRangeFilter 89
ReleaseLevel method 563
ReleaseNumber method 564
Remote Data Sharing. See RDS 391
report request fields

correspondence with QuickBooks user inter-
face 99

ReportAccountFilter 103
ReportCalendar field 100
ReportClassFilter 103
ReportDateMacro field 100
ReportEntity filter 105
ReportEntityFilter 103
reporting 167
ReportItemFilter 103

8 Index

(c) 2013 Intuit Inc. All rights reserved.

reports 75, 107, 159
a practical approach to generating 99
Aging 95, 104, 115
calculating subcolumn values in 101
categories of 93
column titles in 107
custom 101
Custom Detail 104
data row 109
date range for 100
default 98
example of a request for 105
example of a response 109
example of field names in UI 108
example of transaction detail report 111
filters for 104
General Detail 96, 101, 104, 117
General Summary 94, 118
how to begin using 93
including personal data in 113
Job 95, 115
JobEstimatesVsActualsDetail 105
JobProfitabilityDetail 105
meta-data in responses 107
MissingChecks 105
Payroll Detail 104
problems with data in 114
problems with data returned 101
PurchaseByVendorSummary 105
PurchseByVendorSummary 115
report basis 107
response data 107
responses for 107
setting up filters for 103
subcolumns in 101
text row 109
Time 95
time 116
title for 107
valid options for requests‹tables› 115

ReportTxnTypeFilter 104
request ID 31, 169, 408
request message set

resending for error recovery 406
saving persistent copy of 406

Request Processor 45
COM API, methods for 539
release level of 563
release number of 564

Request Validator utility 24
requesting additional data

in queries 90

requests 30, 49
comparing 408
identifying 408
validating 483

required elements 168
response status 491
responseData 171
responses 30
restoring the company file 499, 500
result codes 515
ReturnColumns field 100
ReturnRows field 100
roadmap

for documentation set 19
RowData field 109
rows

number of 107
Rq suffix 31
rules

for applying payments automatically 220
for appying credits and discounts 227

S
Sales By ItemSummary report 103
sales units, not supported via SDK 537
SalesOrderAddRq 347
SalesOrderModRq 347
SalesReceiptAddRq 255, 347, 364
SalesReceiptModRq 266, 347
SalesReceiptQueryRq 273
sample applications for SDK 24
saving state

in QuickBooks 405
SDK, sample applications in 24
SDKTest program 483
SDKTest utility 24
session 23

multi-user 53
ticket 543

SetCredit aggregate 218
setting credits 219, 221
setting discounts 219, 221
SIN elements 535
single session, versus multiple sessions 48
single-user mode 135

advantages and disadvantages of 55
effects of 54
specifying in BeginSession 543

social security numbers, allowing access to 54
software libraries included in the SDK 23
special-character restrictions on menu-item
names 208

Index 9

(c) 2013 Intuit Inc. All rights reserved.

SSNOrTaxID data 113
stand-alone installers 396, 506
startup 403, 406
state 171

clearing 405, 409
maintaining within your application 410
saving 403, 405

statement charges 220
applying discounts to 221

status check
example of 409

status code 172, 482
status code 3120 499
status code 3130 499
status code 3140 499
status code 3151 114
status code 3152 115
status code 3161 135
status code 3175 135
status code 3231 171, 409
status code 3240 500
status code 3260 136
status code 3261 113
status code 600 410
status code 9001 408, 410
status code 9002 410
status code information

in Appendix A 491
status codes 491

in messageSetStatusCode attribute 408
table of 509

status codes, error recovery
listed 408

status codes, qbXML
table of 509

status information
types of 172

status message 173
status severity 172
stopOnError 171
subcolumns

calculating values for in reports 101
in reports 101

subelements
for lists 160

SubscriptionDelRq 180
subscriptions

to UI events 200
subtitle

for reports 107
subtitle for 107
subtotal row

in reports 109
SummarizeColumnsBy field 100
SummarizeRowsBy field 101
Summary reports

default values for 102
SupportedQBXMLVersion 170
Symbol elements 536
SymbolPos elements 536
synchronization

special cases 503
synchronization problems

status codes to monitor 499
synchronizing data 499
synchronous processing 49
system crashes 403

T
tagname

for macros 156
Tax1Number elements 535
Tax1Rate elements 535
Tax1ReportingPeriod elements 535
Tax1Total elements 535
Tax2Number elements 535
Tax2Rate elements 535
Tax2ReportingPeriod elements 535
Tax2Total elements 535
TaxCode objects list 535
Technical Overview 134, 136, 494
test case

how to build 483
text row

in reports 109
ThousandSep elements 536
ticket 547, 559, 561
time differences 503
Time reports 95

default values for 102
valid options for 116

Time Tracking permissions 488
TimeCreated 136, 168
TimeModified 136, 168
title

for reports 107
ToDo query 85
ToModifiedDate

in filters 82
ToMsgSetResponse method 453
tools

for installing your application 397, 506
ToReportDate field 100
total row

10 Index

(c) 2013 Intuit Inc. All rights reserved.

in reports 109
TotalAmount 219

and payment amounts 220
TotalBalance 169
TotalBalance filter 85
TrackTax1Expenses elements 535
TrackTax2Expenses elements 535
transaction detail report

example of 111
transaction filter

example of 87
transaction history 218
transaction ID 155, 219
transaction line items 503
transaction queries

filters for 86
transaction type 219
transactions 159

closed 135
date filters for 86
functional groupings for 161
general description of 161
identifiers for 162
linked 90, 218
locked 135
persistent IDs for 161
receive payment 219
reference numbers for 161

TxnDeletedQueryRq 500
TxnID 86, 134, 136, 162, 219, 221, 232

obtaining using reports 105
TxnLineID 231
TxnVoidRq 136
TxnVoidRq message 136
TxnVoidRs message 136
TxnVoidType element 136
types of lists 160

U
U.K.-specific elements 536
UI extensions

local support only 200
UIEventSubscriptionAddRq 178
UIExtensionSubscriptionAddRq 178, 206
unattended mode (of QuickBooks login) 51
Undeposited Funds account 230
units of measure feature, not supported via SDK
536
unused payment 223
user

notifying before changing company file data
503

user interface in QuickBooks
and report request fields 99

user, auto-login 488
using the stand-alone installers 396, 506

V
validating qbXML text stream 559, 560
validating requests 483
Validator 482
Validator tool 483
Validator utility 24
vendor

paying multiple bills from same 224
Verify method 483
version incompatibility 485
version, of QuickBooks 47, 486
versions

of QuickBooks 494
of the QuickBooks SDK 494

voiding objects 136

W
warning status message 173
warnings

in log file 493
WorkersCompCodeMod-Modifying workers comp
codes 125

X
XML stream 494

	Intuit QuickBooks® SDK
	Programmer’s Guide
	Version 13 .0
	About This Manual
	Who Should Read This Manual?
	Before You Begin
	What’s New in This Guide?

	Introduction to QBSDK Programming
	What is the SDK?
	What Kinds of Integrations are Possible with the SDK?
	Which QuickBooks Editions/Versions Support My Application?
	What’s Included in the QuickBooks SDK Package?
	What is the Onscreen Reference OSR? Why Must I Use It?
	How Does QuickBooks Toggling Affect My Application?
	Do I Have to Use XML? Or are Convenience Libraries Available?
	Which Programming Languages Can I Use?
	What Do I Need to Know Before I Start Programming?
	What Kind of Technical Support is Available?

	Jumpstart
	After the Tech Overview and the SDK Essentials Video...

	The Communication Model and Ways of Implementing It
	The Basic Communication Pattern
	Authorizations You Need to Know About
	Company Owner Authorization of SDK Applications
	Intuit Gateway Authorization of SDK Applications

	Messages: The Content of the Communication
	What’s in a Message?

	Ways to Implement Communication With QuickBooks
	Desktop Applications Accessing Local QuickBooks
	Web Services Accessing QuickBooks via QB Web Connector

	Specifying Authorization Preferences
	How the QuickBooks UI Supports Authorization/Access
	When is the Authorization Dialog Displayed?
	The Default Authorization Dialog

	How the AuthPreferences Object Works
	How to Use the AuthPreferences Functionality
	What Happens as a Result of the AuthPreference Settings?
	Setting Authorization Preferences Within QuickBooks

	Accessing Desktop QuickBooks Editions
	Using Java with QB SDK
	A Note About the Request Processor
	How to Access QuickBooks
	VB Code Snippets for Access if You Use qbXML
	VB Code Snippets for Access if You Use QBFC
	What Happens in the Call to BeginSession?
	Troubleshooting Errors in the BeginSession Call

	Multiple Sessions versus a Single Session
	Using AuthFlags to Specify Support for QuickBooks Editions
	Setting AuthFlags to Specify Support for a QuickBooks Edition

	More Information about Login Modes
	Setting Up Auto-Login
	Only One Auto-Login User per Application

	Limitations on Accessing Company Files
	Allowing Application Access to Personal Data
	Single-User vs. Multi-User Mode
	Trade-offs of Using Single-User Mode

	Microsoft Windows Vista & Windows 7 and UAC

	Building Requests In QBFC and in qbXML
	A Few Notes About Using QBFC
	Building a Request using QBFC
	What You Need to Do in QBFC
	Sample: Building a SalesOrder Using QBFC
	The Importance of the CreateMsgSetRequest Call
	Background Details About the MsgSetRequest Object
	Another View of the Message Set Request Structure

	Building a qbXML Request
	What You Need to Do in qbXML using a DOM Document

	Handling Responses Using QBFC or qbXML
	Processing a Response Using QBFC
	Background Information: Understanding IMsgSetResponse
	Background Information II: IResponse

	Processing a qbXML Response
	What You Need to Do to Process a Response in qbXML
	Processing a Response Message Set: Sample Code

	Creating Queries
	When to Use a Query vs a Report
	Different Ways of Using Queries to Get the Same Data
	Getting a Count of Query Objects
	Filters
	Limiting the Number of Objects Returned
	Using Iterators to Walk Through Large Query Returns
	Limiting Returned Data Using IncludeRetElement
	Using MaxReturned

	List Queries: Commonly Used Filters
	ListID or FullName
	Active Status
	Filtering by Date Modified
	Match Criterion for Names
	Ranges for Names
	Special Information Contained in an AccountRet Object
	Special Filters

	Transaction Queries: Commonly Used Filters
	TxnID or Reference Number
	Date Filters
	Entity Filters
	Account Filters
	Reference Number Filters
	Paid Status
	Requesting Additional Data

	Special Queries
	The Generic TransactionQuery
	TransactionQuery and Access Permissions
	Filters for TransactionQuery

	Generating Reports
	Before You Begin
	Categories of Reports
	General Summary Reports
	Job Reports
	Time Reports
	Aging Reports
	Budget Summary Reports
	General Detail Reports
	Payroll Summary Reports
	Payroll Detail Reports
	Custom Summary and Detail Reports

	Default Reports
	A Practical Approach
	Creating a Report Request
	Modifying a Profit and Loss Standard Report
	Setting Up Filters for a Profit and Loss Standard Report
	“IncludeColumn” Field
	Required Filter for Certain Job Reports
	Required Filter for Missing Checks Report
	Example of a Report Request
	Creating Requests for Budget Reports

	Interpreting the Report Response
	Report Meta-data
	Report Data
	Example
	Enumerated Values for “ClearedStatus” Column
	Transaction Detail Reports
	Order Column
	Including Personal Data in Reports
	Including Payroll Data in Reports
	My Report Has No Data!

	Valid Request Options for Individual Report Types

	Modifying and Deleting Transactions and List Objects
	Modifying Objects in General
	Edit Sequence
	One Way to Delete an Element’s Value
	Clearing References
	Clearing Aggregates

	How to Modify Transactions
	Parts of a Transaction
	Modifying the Body of a Transaction
	Modifying Transaction Body Without Modifying Line Items
	Shortcut Way to Retaining a Line Item Exactly As Is
	Modifying a Line Item
	Inserting a New Line Item In a Mod Operation
	Deleting a Line Item
	Example: Modifying Transaction Lines
	Example: Modifying Groups within the Line Item Table
	Example: Modifying Item Lines in an Item Group

	About Modifying Rate, Quantity, and Amount Line Item Fields
	Deleting an Object
	Must be in Single-User Mode (Except for Enterprise)
	Accountant Copy Restrictions
	Locked Transactions
	About Closed Transactions
	About Permissions
	Voiding an Object

	Data Ext: Using Custom Fields and Private Data
	Core Differences Between Custom Fields and Private Data
	How Do I Create Data Extensions?
	Enough Pictures: Show Me Some Code

	What Makes a Data Ext Definition a Custom Field vs Private?
	But There is More To It

	A Cool Feature: Transactions Inherit From Customer, Item
	Inheriting from Customer to Transactions
	Inheriting from Item to Transactions
	Do Individual Transactions Also Inherit Custom Field Values?
	Writing to Custom Fields Only Affects the Current Transaction

	How Do I Get DataExt Data Back Using Queries?
	Writing Data to a Data Extension
	Clearing a Value from a Data Extension
	Deleting a Data Extension Definition: Limitations
	Deleting Custom Fields From the QuickBooks UI

	Making Custom Fields Show Up In QuickBooks and in Print
	I Want to Use Private Data: How Do I Use GUIDs?
	The Format of the GUID within the Request
	How Do I Retrieve OwnerIDs?
	What is an OwnerIDList?

	Using Other, Other1, Other2 in Transactions
	Writing Custom Field Data to Transaction Lines
	Modifying Custom Field Data in Transaction Item Lines

	Using Macros In Requests
	What is a Macro?
	Must Macro Names be Unique?

	A Sample Macro
	Where Can You Define a Macro? Use a Macro?
	Using Macros to Set Cleared Status

	Objects, ObjectRefs, Fullnames, and Attributes
	Lists
	Transactions
	Identifiers
	ListID
	FullName
	Object References
	About DateTimes
	Templates
	Operations
	Adding an Object: Example of a Request and Response
	Querying for Objects

	Attributes in the SDK
	Message Set-Level Attributes
	Request Attributes
	Response Attributes
	Query Attributes

	Event Notification
	Using the C# App Template to Implement Eventing
	What Requests Do I Use and How Do I Invoke These?
	How Do I Invoke Subscription Events?

	Overview: The Event Notification Framework
	QuickBooks Events and Event Notification
	Subscribing to Events
	Authorizing a Callback Application to Receive Events
	Processing Events in a Callback Application
	Handling Special QuickBooks Operations
	Putting it All Together: The Event Notification Flow

	Implementing Event-Awareness in qbXML
	Subscribing, Unsubscribing, and Querying Subscriptions in qbXML
	Implementing a qbXML-based Callback (IQBEventCallback)

	Integrating with the QuickBooks UI
	Using the C# App Template to Implement UI Events
	What Types of Integrations Can I Do?
	Before Your Application Can Extend the QuickBooks UI
	Subscription
	Authorization
	Authorization Scenarios Affecting UI Extensions

	UI Guidelines
	Menu-Extension Guidelines

	Adding a Menu Item to QuickBooks
	Where Your Menu Item Will Appear
	Menu Item Names
	Display Conditions
	Getting QuickBooks Context Information From a Menu Item Click

	Error Handling
	When the Authorization Level Changes
	Lost UI Events

	Invoking the QuickBooks UI
	Opening Transaction Forms
	Opening and Prefilling a New Transaction
	Opening List Windows
	Displaying Reports

	Handling Receive Payment, Bill Payment, and Deposit Transactions
	Core Concepts for Receive Payment and Bill Payment
	Applying Payments, Credits, and Discounts
	Linked Transactions
	Returned Object for AppliedToTxnAdd
	Creating Links Instead of Transactions

	Receive Payment Transactions
	Applying a Payment
	Setting Discounts
	Setting Credits
	Using ReceivePayment for Credit Card Authorization and Capture

	Modifying a ReceivePayment Transaction
	Bill Payment Transactions
	Payment Method
	Paying the Bill
	Setting a Credit
	Setting a Discount
	Bill Payment Examples

	Modifying a BillPaymentCheck Transaction
	Deposits

	Linking ItemReceipt/Bill to PurchaseOrder, Invoice to Sales Order
	Important Note about Querying for Linked Transactions
	Linking Bill or ItemReceipt to PurchaseOrder
	The Basic User Scenario in the QuickBooks UI
	Linking an ItemReceipt or Bill to PurchaseOrder Using the SDK

	Rules For Linking a Bill or ItemReceipt to a PurchaseOrder
	Why Does the OSR List LinkToTxn for Unsupported Transactions?
	Converting ItemReceipts to Bills
	Limitations and Pitfalls of Modifying a Bill or ItemReceipt
	ItemReceipt and Bill Split Option for QuickBooks Enterprise
	Re: “Is Manually Closed” in Purchase Orders and Sales Orders
	Linking Invoices to SalesOrders
	The Basic User Scenario in the QuickBooks UI
	Linking Invoices to SalesOrders in the SDK

	Using SalesReceipt Functionality
	Adding a SalesReceipt
	Some Expected Data May be Missing from the Response
	Adding a SalesReceipt in QBFC
	Adding a SalesReceipt in qbXML

	Modifying a SalesReceipt
	Special Limitations Imposed By Credit Card Payment Method
	Which SalesReceipt Fields Can Be Modified?
	Which SalesReceipt Fields Can Be Cleared?

	Modifying a SalesReceipt in qbXML
	Modifying a SalesReceipt in QBFC

	Querying for SalesReceipts
	Querying for SalesReceipts in qbXML
	Querying for SalesReceipts in QBFC

	Deleting and Voiding SalesReceipts

	Using Credit Card Refund Functionality
	Adding a Credit Card Refund Transaction
	Adding a Credit Card Refund in QBFC
	Adding a Credit Card Refund in qbXML

	Querying for ARRefundCreditCard Transactions
	Deleting and Voiding ARRefundCreditCard Transactions

	Using Price Levels in Transactions
	What is a Price Level?
	The Two Types of Price Levels Supported by QuickBooks

	Why Are Price Levels Useful?
	Are Price Levels Automatically Available?
	Using Price Level Functionality in Your Application
	How to Create a Price Level
	Creating a Fixed Percent Price Level
	Creating a Per Item Price Level

	How to Apply a Price Level to a Customer
	How to Apply a Price Level to a Line Item

	Using Billing Rates To Bill For Time
	Which QuickBooks Editions Support Billing Rates?
	Key SDK Limitations You Need to Know Before You Start
	What Happens If I Use Both Price Levels and Billing Rates?
	What is a Billing Rate?
	What is the Workflow? How Do I use a Billing Rate?
	A Detailed Look at the Billing Rates Workflow
	Creating Service Items
	Creating Billing Rates in the UI
	Creating Billing Rates in the QB SDK
	Assigning Billing Rates to Employees, Vendors, Other Names
	Using Billing Rates in Time Transactions
	Invoicing Customers for Billable Time (UI Only)

	Using the Multicurrency Feature in the SDK
	Impact of Multicurrency on Existing Applications
	Company Preferences and Multicurrency
	Getting Multicurrency and Home Currency from PreferencesQuery

	QuickBooks Currencies/Exchange Rates and the SDK
	“Built-in” Vs. User Defined Currencies
	Active Vs. Inactive Currencies
	How Do You Set Currency Exchange Rates?
	What Happens in Transactions When You Change Exchange Rate?

	Multicurrency Effect on Transaction Amounts and Balances
	Multicurrency Effect on List Objects Amounts and Balances
	Multicurrency Effects on Reports
	ARAccountRef/APAccountRef Guidelines

	Using the Multi-Location Inventory Feature in the SDK
	Impact of Multi-Location Inventory on Existing Applications
	Company Preferences and Multi-Location Inventory
	Getting Multi-Location Inventory from PreferencesQuery

	InventorySite features for Multi-Location Inventory
	Transfer Inventory Transactions Feature
	Site Attributes for Transaction with Multi-Location Inventory
	Multi-Location Inventory Support for Group Items

	Using the Quickbooks Vehicle Mileage Feature
	Key Limitations of QB SDK Support for Vehicle Mileage
	How the Vehicle Mileage Feature Works
	Setting Up an Item to be Used In Billable Mileage Transactions
	What Happens to Mileage Charges When I Create Invoices?
	Mileage Charges and Invoices in the UI
	Mileage Charges and Invoices in the SDK

	Adding a Vehicle Mileage Transaction
	Adding Vehicle Mileage in qbXML
	Adding Vehicle Mileage in QBFC

	Querying and Deleting Vehicle Mileage Transactions
	Modifying Vehicle Mileage Transactions
	Adding, Modifying, Querying Vehicles in the Vehicle List

	Adding, Modifying, Querying Worker Comp Codes
	What Can I Do With the Comp Codes I Create?
	Workers’ Comp Code Feature Requires Payroll Subscription
	How Can I Tell Whether the Company is Subscribed to Payroll?

	Workers Comp Codes in the UI and in the SDK
	Adding a Comp Code with Several Rates Possible via SDK
	Current Effective Date and Current Rate
	Rate History: Visible Only Through the SDK

	Adding a Workers Comp Code
	Adding a Comp Code Using QBFC
	Adding a Comp Code Using qbXML

	Querying for Workers Comp Codes
	Querying for Comp Codes in qbXML

	Modifying Workers Comp Codes
	Modifying a Comp Code in qbXML

	Using the Unit of Measure Feature Via the SDK
	How Can I Tell If the UOM Feature is Available?
	Which SDK Requests Support UOM?
	How Does the UOM Feature Work?
	Creating a UOM Set in the UI
	How Do I Create a UOM Set in the SDK?
	Why Do I Need to Follow the UOM Set Naming Convention?
	Can I Modify a UOM Set in the SDK?
	Can I Set UOM Set Defaults for Purchase, Sales, and Shipping?
	How Do I Specify Which Units the UOM Set Contains?
	What Does the Abbreviation Field Do? Why’s it Required?
	Creating a UOM Set in QBFC
	Creating a UOM Set in qbXML

	Specifying a UOM Set for an Item
	What You Must Do in an Item Mod
	Specifying a UOM Set in an Item* Add Request
	Specifying a UOM Set in an Item* Mod Requst

	Using UOM in Transactions
	Using UOM in a Transaction Add Request
	Using UOM in a Transaction Mod Request

	Merging Accounts, Customers, Vendors, Classes
	What Does ListMerge Do?
	What Happens in the ListMerge Operation?
	When Can I NOT Do a ListMerge?

	Can I Undo or Reverse a ListMerge?
	What Must I Do Before Merging?
	Merging Accounts
	Comparing AccountType and Changing Sublevel

	Merging Classes
	Merging Customers
	Code Sample

	Merging Vendors

	Using Assembly Item and BuildAssembly Functionality
	Overview of QuickBooks Assembly Items and Build Assembly
	You Must Have Sufficient Components for the BuildAssembly
	QB Activities that Change BuildAssembly Transactions into Pending
	Consequences of Modifying an Existing Inventory Assembly Item
	Impact of SalesReceipts and Invoices on Assemblies in Inventory
	Disassembling Inventory Assemblies
	Getting BuildAssembly and Assembly Item Reports

	Adding an Inventory Assembly Item
	Adding an ItemInventoryAssembly in qbXML
	Adding an Assembly Item in QBFC

	Modifying an Existing Inventory Assembly Item
	Modifying an Assembly Item in qbXML
	Modifying an Assembly Item in QBFC

	Querying for Inventory Assembly Items
	Querying for Assembly Items in qbXML
	Querying for Assembly Items in QBFC

	Adding a BuildAssembly Transaction
	Adding a BuildAssembly Transaction in qbXML
	Adding a BuildAssembly Transaction in QBFC

	Modifying an Existing BuildAssembly Transaction
	Modifying a BuildAssembly in qbXML
	Modifying a BuildAssembly in QBFC

	Querying for BuildAssembly Transactions
	Querying For BuildAssembly Transactions in qbXML
	Querying For BuildAssembly Transactions in QBFC

	Taxes and Discounts (US Versions)
	Calculating Sales Tax
	Applying Multiple Taxes
	Applying Discounts
	Flat vs. Percentage Discounts
	Nontaxable Flat Discount
	Taxable Flat Discount

	Remote Data Sharing and Your Application
	What is Remote Data Sharing?
	Using RDS Client for Remote Access with QuickBooks Installed Locally
	RDS and Event Notification
	Compatibility with Older Versions of RDS
	About the RDS Server
	About the RDS Client

	Distributing RDS
	How to Use the SDK Installers and Merge Modules
	Choices in Implementing Your Installer

	Supporting RDS
	What Your Application Must Do to Use RDS
	Which Versions of QuickBooks Support RDS?
	What You Need to Tell Your Customers about RDS
	RDS-Specific HRESULTs Messages

	Error Recovery
	The General Error Recovery Mechanism
	When to Invoke Error Recovery
	HRESULTs Returned by QuickBooks

	Automated Error Recovery in QBFC
	Implementing Automated Error Recovery

	Using Error Recovery in qbXML-based Applications
	Error Recovery Using Old and New Message IDs
	How to Clear All Error Recovery Information
	Steps for Using Error Recovery in qbXML-based Applications
	Example
	Message Set Status Code
	Request ID
	Comparing Requests (Performing a Checksum)
	Status for Individual Requests within a Message Set
	Clearing State (oldMessageSetID)
	Maintaining State within Your Application
	Clearing Error Recovery Records Maintained by QuickBooks

	How to Use the QBFC Convenience Library
	Understanding QBFC Objects
	Objects, Objects Everywhere: Where Do I Start?

	Which Objects Do I Need to Create a Request?
	How Do I Use the OSR to Fully Construct the Request?
	Other Useful IMsgSetRequest Methods

	Which Objects Do I Need to Process a Response?
	Getting Data from the Ret Object
	Objects and Methods Used in Processing Response Data

	QBFC Language Reference
	QBSessionManager Object and Methods
	QBSessionManager.BeginSession
	QBSessionManager.ClearErrorRecovery
	QBSessionManager.CloseConnection
	QBSessionManager.CommunicateOutOfProcess
	QBSessionManager.ConnectionType
	QBSessionManager.CreateMsgSetRequest
	QBSessionManager.CreateSubscriptionMsgSetRequest
	QBSessionManager.DoRequests
	QBSessionManager.DoRequestsFromXMLString
	QBSessionManager.DoSubscriptionRequests
	QBSessionManager.DoSubscriptionRequestsFromXMLString
	QBSessionManager.EnableErrorRecovery
	QBSessionManager.EndSession
	QBSessionManager.ErrorRecoveryID
	QBSessionManager.GetCurrentCompanyFileName
	QBSessionManager.GetErrorRecoveryStatus
	QBSessionManager.GetSavedMsgSetRequest
	QBSessionManager.GetVersion
	QBSessionManager.IsErrorRecoveryInfo
	QBSessionManager.OpenConnection2
	QBSessionManager.QBAuthPreferences
	QBSessionManager.QBXMLVersionsForSession
	QBSessionManager.QBXMLVersionsForSubscription
	QBSessionManager.SaveAllMsgSetRequestInfo
	QBSessionManager.ToEventsMsgSet
	QBSessionManager.ToMsgSetRequest
	QBSessionManager.ToMsgSetResponse
	QQBSessionManager.ToSubscriptionMsgSetResponse
	IQBAuthPreferences Object and Properties
	IQBAuthPreferences.GetIsReadOnly
	IQBAuthPreferences.GetPersonalDataPref
	IQBAuthPreferences.GetUnattendedModePref
	IQBAuthPreferences.PutAuthFlags
	IQBAuthPreferences.PutIsReadOnly
	IQBAuthPreferences.PutPersonalDataPref
	IQBAuthPreferences.PutUnattendedModePref
	IQBAuthPreferences.WasAuthPreferencesObeyed
	IMsgSetRequest Object and Methods
	IMsgSetRequest.Append*
	IMsgSetRequest.Attributes
	IMsgSetResponse Object and Methods
	IRequest Object and Methods
	IResponse Object and Methods

	Digitally Signing Your Code
	Can I Sign ActiveX or Java Applications?
	About Microsoft Authenticode
	What is a Digital Certificate?
	The Certificate Authority
	Code Signing

	Obtaining a Digital Certificate
	Commercial CA Entities You Can Use
	Obtaining the Certificate

	Signing Your Code
	Do You Have Everything You Need?
	An Example Using a Test Application
	Signing Code With the Internet Client Software Developer’s Kit

	Tips and Techniques
	Best Practices
	Validating Requests
	Investigating the Problem Thoroughly
	Building a Test Case to Make Available to Developer Support
	Sending a Test Case and the Log File to Developer Support

	Supporting Your User
	Using the SDKDiag Tool to Support Your User
	Helping Users Troubleshoot and Resolve Problems
	Multiple Installed Versions of QuickBooks
	Incompatible Versions: QuickBooks and Company File
	Different Company File Is Already Open
	Warn Your Users to Complete Error Recovery before Upgrading
	Versions of Integrated Applications
	Provide a Means for Breaking Out of Error Recovery

	Topics to Include in Your Documentation
	Permissions Required for Auto-Login
	QuickBooks User Permissions
	Application Access to Personal Data
	Complete Error Recovery before Upgrading

	Making Your Application Robust
	Types of Error Codes
	Appendix A for Status Code Information
	Monitoring HRESULTs and HTTP Errors
	Monitoring Message Set Status Codes
	Monitoring Status Codes

	Using the Log File
	Software Versions
	Checklist
	Checking the QuickBooks Version
	Dealing with Unsupported Features

	Error Recovery
	Synchronizing Data between Your Application and Quickbooks
	Monitor Status Codes
	Example of Synchronizing Data with QuickBooks
	Three-Month Limit for ListDeletedQueryRq
	Modification Time
	Cases Needing Complete Re-Sync
	Check with the User

	Redistributing SDK Components With Your Application
	Using the Installers and Merge Modules
	Using the Stand-Alone Installers
	Using the Merge Modules

	Status Codes for qbXML Responses
	HRESULTS from qbXML COM Methods

	QuickBooks Data Accessible Via SDK Objects/Operations
	Objects/Operations Supported by Desktop Editions
	SDK Requests Supported in QuickBooks Simple Start Edition
	Additional Differences for SDK Support of QB Simple Start

	qbXML Specification for the Canadian and UK Editions
	Notes for QB CA/UK 2008 and Newer
	Canada
	UK

	Notes for QB CA/UK 2007 and Older
	Differences Between the Canadian and UK Specs
	Differences Between the US and Canadian qbXML Spec
	Installation
	About Units of Measure
	About UI Integration

	qbXML RequestProcessor Method Reference
	AuthPreferences
	BeginSession
	CloseConnection
	EndSession
	GetCurrentCompanyFileName
	GetIsReadOnly
	GetPersonalDataPref
	GetUnattendedModePref
	WasAuthPreferencesObeyed
	PutAuthFlags
	PutIsReadOnly
	PutPersonalDataPref
	PutUnattendedModePref
	MajorVersion
	MinorVersion
	OpenConnection2
	ProcessRequest
	ProcessSubscription
	QBXMLVersionsForSession
	QBXMLVersionsForSubscription
	ReleaseLevel
	ReleaseNumber

	Enterprise Edition and Single/Multi-User Issues
	Enterprise Features Requiring Single User Mode
	Enterprise List Operations Requiring Single User Mode
	Enterprise Multi User Features

	Overpayments and Refunds
	Overpayments and Refunds
	The Manual Solution
	Taking it to the SDK
	QuickBooks 2007 to the Rescue!
	Conclusion

