

FMS Service Version 3
Draft: 0511/1509/20121

Note to reader. We are looking for consistency between the entities/methods to provide the best user experience possible while still enabling delivery of the targeted functionality.

DACI
Driver – Srini
Approvers – Mark, Peter & Hari
Contributors – Srini, Peter, Greg, Mark, Sridhar, Hari, Ron
Product Manager – Wei Wang

	Revision
	Date
	Description
	Author

	0.9
	11/15/2011
	Initial Draft. Attachments: FDM XSDs, BNF form of Query/Search Language
	Mark Basler (on behalf of DAC)

	1.0
	05/08/2012
	Adding agreed upon comments from reviewers
	Mark Basler

Table of Contents
1	Introduction	3
1.1	In Scope	3
1.2	Not in Scope:	4
1.3	Goals	4
2	Request/Response	5
2.1	Request URI Format	5
2.2	Request Identifier	5
2.2.1	Request Identifier Behavior in Detail	6
2.3	Payload Content Types/Encoding	6
2.3.1	Single & Batch Entities	7
2.3.2	Query and Report	7
2.4	Application Specific Endpoints and Content Types	7
2.5	IntuitResponse Object Wrapper	7
2.6	Fault Representation	8
2.6.1	Error Code Definitions	8
2.7	HTTP Response Status Codes	9
2.8	Single Entity	9
2.8.1	CRUD Request URI formats	9
2.8.2	SparseUpdate Request URI format	10
2.8.3	Request Body Data Structure	11
2.8.4	Successful Response Data Structure	11
2.8.5	Error Response Data Structure	12
2.9	Query/Search language	13
2.9.1	Simple Representation of Query/Search Language	13
2.10	Query	14
2.10.1	Request URI format	14
2.10.2	POST Request Body Structure	15
2.10.3	Successful Response Data Structure	15
2.10.4	Error Response Data Structure	15
2.11	Report	17
2.11.1	Report Syntax	17
2.11.2	Request URI format	17
2.11.3	POST Request Body Structure	17
2.11.4	Successful Response Data Structure	17
2.11.5	Error Response Data Structure	18
2.12	Change Data Query	19
2.12.1	First Request URI format	19
2.12.2	Successful Response Data Structure	19
2.12.3	Second Request URI format	19
2.12.4	Request Body Structure	20
2.12.5	Successful Response Data Structure	20
2.12.6	Error Response Data Structure	20
2.13	Batch Entities/Operations	22
2.13.1	Request URI format	22
2.13.2	Request Body Structure	22
2.13.3	Response Data Structure	23
3	FMS Data Model Payload (FDM)	25
3.1	IntuitEntity Attribute Decorators	25
3.2	Primary Key (Id) Representation	26
3.3	Entity Fields	26
3.3.1	Field Names	26
3.4	Date & DateTime Formats	26
3.5	Domain Specific Entities	26
4	Versioning	27
4.1	FDM Versioning	27
4.1.1	Backward compatible changes	27
4.1.2	Breaking Changes	27
4.2	Service Endpoints Versioning	27
5	Items for Later Consideration	28
6	Appendix A: Detailed Error Codes	29
6.1	General Error Codes	29
6.2	Validation Error Codes	29
6.3	Authentication and Authorization Error Codes	31
6.4	Unsupported Error Codes	31
6.5	Specific Error Codes	32
6.6	Severe Error Codes	32
7	Appendix B: Comparison of V2 and V3 Differences	33

[bookmark: _Toc324333730]
Introduction
One of Intuit’s main business goals is to grow revenue 20% year-over-year. An ongoing effort to help attain this goal is enabling partners by focusing on the third-party application development market.

To enable the partners, Intuit core functionality is being exposed as part of a SAAS platform through the Intuit Partner Platform. This platform continues to evolve into an ecosystem that will provide a wide range of services offered by Intuit and our partners.

FMS started exposing financial management services to partners in 2009 using a format that was devised by the technical stake holders at that time and was termed CDM V2. This format focused on the entity data and the relationship between entities, but missed key artifacts to provide users with a consistent experience.

FMS Services Version 3 (V3) builds on the learnings of V2 and adds the missing artifacts that were deemed necessary to convey a complete communication model between the user and the service endpoint. This will help FMS provide a consistent end-to-end user experience and promote partner/user adoption.

 The FMS Services V3 specification’s aspiration is to detail all the major artifacts in the communication between a user and a service endpoint that exposes targeted functionally. This document will focus on the actual user contract and is not meant to detail how the service is implemented or hosted. Though this document mentions some transport specifics, it is not meant to preclude other transport mechanisms like SOAP or Messaging Services (e.g. JMS). This model targets RIA/Server-to-Server communications and generally in not meant to take thin-client requests directly (e.g. HTML Form submissions with mime-type "application/x-www-form-urlencoded").

FMS Services V3 key artifacts include this specification and the XML Schemas (XSD) that represent the FDM/Messaging formats. These artifacts are deemed the contract with our users and subject to Versioning.

This document is the result of significant developer time and effort. Options were discussed, proofed, reconciled with industry standard & current requirements and where appropriate, critiqued to meet the needs of the business. For more information about the designs, options explored and decisions please visit the FMS Services V3 and FMS Services V3 Detail Wiki pages.

[bookmark: _Toc324333731]In Scope
· Request/Response formats for the following categories
· Single Entity
· Query
· Report
· CDC
· Batch
· Fault format
· FMS Data Model
· Versioning

[bookmark: _Toc324333732]Not in Scope:
· Service artifacts that are detailed in the “Items for Later Consideration” section
· Domain specific services and associated data objects, though the goal is to remain as consistent as possible with this specification.
· Authentication/Authorization methodologies
· Technologies for hosting or implementation
· Implementation Details (though some suggestions may be documented)
· Semantic differences between QBD & QBO
· Security implications of services (e.g. DOS, expansion & accessing internal data structures)

[bookmark: _Toc324333733]Goals
The goal of this specification is to document the complete communication model between the end-user and the service endpoint, including message-exchange-patterns & payloads. This should enable a developer to create a V3 compliant service that provides a consistent user experience across FMS.

· Detail all customer facing artifacts that are required in exposing targeted functionality as part of a SAAS platform
· Provide a consistent user experience across FMS services
· Be global ready
· Be compliant to the Intuit Web Service Design Principles

[bookmark: _Toc324333734]Request/Response
The following section describes the request & response rules and formats with their associated payloads.

[bookmark: _Toc324333735]Request URI Format
The request format consists of a base URI, the service version, the company id and the entity/operation. Based on the entity/operation, different configurations are supported.

For example: <baseurl>/v3/company/<companyid>/<entityname> or <operation>/

· The <baseurl> typically represents the protocol, host/ port and context of the service endpoint (e.g. https://qbo.intuit.com/qbo1finance.intuit.com).
· The Service version is currently “v3”
· The” company/<companyid>” represents the actual company (realm identifier) the request targets. The “company/” modifier helps qualify the next value in the URI to remove ambiguity with other id values that are used across Intuit. The “companyid” was deliberately placed after the version in the URI to give a more consistent location to facilitate devices that help enable security.
· The <entityname> is the name of the entity being exposed (e.g. customer, invoice, etc…). These entities in many cases are domain specific with some common entities being shared among the domains. The <entityname> can be overloaded to enable exposing domain specific entities.
· The <operation> is one of the main types of functionality exposed by the service that can cross entities (e.g. query, report and batch). The <operation> can be overloaded to enable exposing domain specific operations.
· The URI is specified as all lowercase.

The following is a list of query string parameters that can be associated with requests:
· Request Identifier - “requestid”
· Method Delineator - “operation”
· Cascade Flag – “cascade”
· Response Format – “format”
· Response Code workaround for clients like Flex - “only200s”
The preferred method of specifying request parameters is to use the query string to enable heterogeneous batch support. FMS maps the functionality exposed through the query string directly to batchitem attributes for consistency.

[bookmark: _Toc324333736]Request Identifier
The request identifier (“requestid”) query string parameter can be used in mutating requests and is a means to correlate requests and responses to mitigate unreliable connections. It isn’t mandatory, but is recommended to help with reconciliation due to intermittent failures (e.g. mobile). If the request identifier isn’t used, it is the responsibility of the client to ensure the reconciliation of multiple, non-idempotent requests that may be submitted in error.

The ”requestid” is also used to ensure that a service request is only processed once. If a service receives a request with the same “requestid”, the service will reconstruct the response and return it without making the changes again (without mutation). This avoids extra work for the user to try and reconstruct the proper response from a fault and avoids devising a special format that can be sent in the fault to allow reconstruction. This is true for both single entity and batch requests.

It is the responsibility of the user to send a unique “requestid” per “companyid”/request to the service endpoint. If a “requestid” is reused, no mutation will take place and a response representing the previous “requestid” will be returned. To mitigate this risk, we recommend using a UUID as the “requestid” like JavaSE’s java.util.UUID. Storage for this field should be able to accommodate 50 characters to enable the use of UUID generating mechanisms.

It is the responsibility of the service to prevent clashes of the “requestid” between companies & users. The service must ensure that 2 or more users having the same “requestid” generation scheme do not clash.

[bookmark: _Toc324333737]Request Identifier Behavior in Detail
· If the “requestId” exists on a Create operation and it completed successfully, the created object will be returned which may include modifications that occurred after the originating Create request was received. This may cause some confusion with the user, so this functionality much be clearly documented. If the operation wasn't completed successfully, the appropriate fault will be returned.

· If a “requestId” exists on an Update operation and it completed successfully, the updated object will be returned which may include modifications that occurred after the Update request was received. This may cause some confusion with the user, so this functionality much be clearly documented. If the operation wasn't completed successfully, the appropriate fault will be.

· If a numerous Update operations are sent for the same object and one of the requests isn't received. When the Update request is resent (after another requests have been processed), the “syncToken” will be out of sequence and prevent an improper/stale update. The user will need to re-read the object and resubmit the change, if appropriate.

· If a “requestId” exists on a Delete operation and it completed successfully, the deleted object Id will be returned. If the operation wasn't completed successfully, the appropriate fault will be returned (see implementation note below).

· For Read operations, “requestId” shouldn't be used, because these requests are inherently idempotent. If the idempotent request is part of a batch that has a “requestId” and the “requestId” exists, the operation will be re-executed and the response returned.

· The minimum retention time for “requestId” storage must be consistent between services. The stated policy is at least 72 hours to account for mobile users who are disconnected for extended periods of time and may be adjusted based on business needs.

[bookmark: _Toc324333738]Payload Content Types/Encoding
The primary payload formats are XML and JSON (RFC 4627) for both the requests & responses. Data compression (GZIP, deflate) should be enabled to enhance performance. To express a specific Response content-type the “Accept” header field can be set or a “format” query string parameter can be used with the appropriate mime-type value. If both are specified, the “Accept” header field query string overrides the query string “Accept” header field.

[bookmark: _Toc324333739]Single & Batch Entities
Request content-type: application/xml or application/json
Accept: application/json
Accept-Encoding: gzip, deflate
Content-Encoding: gzip

Response content-type: application/xml, or application/json
Content-Encoding: gzip

[bookmark: _Toc324333740]Query and Report
Request content-type: application/text
Accept: application/json
Accept-Encoding: gzip, deflate
Content-Encoding: gzip

Response content-type: application/xml, or application/json
Content-Encoding: gzip

[bookmark: _Toc324333741]Application Specific Endpoints and Content Types
Application specific service endpoints may expose custom domain functionality and content-types based on business requirements (e.g. images, different document types, etc.). These end-points should be in-addition to the entity/operation end-points, be clearly documented and try to provide a consistent user experience.

[bookmark: _Toc324333742] IntuitResponse Object Wrapper
The IntuitResponse wrapper has been introduced as an "envelop" object that wraps all the responses in a common "root" element. A consistent root element enables a wide variety of clients to process the response without programming by exception. This object also contains information that describes the data in the body, but doesn’t belong in the body.

The IntuitResponse element can contain the following attributes (as defined by the XSD):
· “requestId” – the id that came with the request
· “time” – the server datetime in UTC format of when the response was generated.
· “httpCode” – HttpResponse code for to help interpret the response. This is necessary for Flex clients that can only access the body of 200 HTTP Response codes.

For example: <IntuitResponse requestId="123" time="2006-05-04T18:13:51.00-0800" httpCode=”200”>

The IntuitResponse element can wrap the following XML elements (as defined by the XSD):
· Fault object upon error/failure
· IntuitEntity object upon success
· QueryResponse object for e very Query in the request
· BatchItemResp object for every BatchItem in the request

[bookmark: _Toc324333743]Fault Representation
A Fault is always wrapped within an IntuitResponse or a BatchItemResp.

The following are the types of Faults that are supported:
· “Validation” - Generally recoverable, some invalid data may have been sent, if corrected the request may succeed.
· “Service” - Generally non-recoverable, something failed on the server that can’t be corrected by the user.
· “Authentication” - Authentication credentials are not correct and caused a failure
· “Authorization” - Authorization has failed, for example requesting Estimates for an QBO Essential user

Multiple Errors can be contained in a Fault to facilitate a more robust response, so the user doesn’t have to submit multiple requests just to find it failed another validation check.

The Error element can contain the following attributes (as defined by the XSD):
· “code” – a standard code to further classify the error.
· “element” – the FDM element name that this error is associated with, if applicable.

The Error element can contain the following elements (as defined by the XSD):
· Message – User readable brief text description of the error. The client may choose to show this to the customer and the text must be Global Ready.
· Detail – The detailed message that gives the user more information to help debug the error. This message may not be Global Ready.

For example:
<IntuitResponse requestId="123" time="2006-05-04T18:13:51.00-0800">
 <Fault type="Validation">
 <Error code="100" element="firstname">
 <Message>Length exceeds limit</Message>
 <Detail>Length of the field exceeds 21 chars</Detail>
 </Error>
 <Error code="200" element="postalcode">
 <Message>Illegal number format</Message>
 <Detail>ZipCode should be a number with at least 5 digits</Detail>
 </Error>
 </Fault>
</IntuitResponse>

[bookmark: _Toc324333744]Error Code Definitions
The Error code attribute is populated with a standard value to further classify the specific error.

Standard Error code Ranges
	Error code range
	General Category of code range

	0
	Successful Response

	1-499
	Authorization and Authentication Errors

	500-599
	Unsupported Error Types

	600-1999
	General Errors

	2000-4999
	Validation Errors

	5000-9999
	Specific errors including Warning

	10000+
	Severe Error

Detailed Error Codes are located in Appendix A

[bookmark: _Toc324333745]HTTP Response Status Codes
The following HTTP response codes are the primary set that will be supported when using the HTTP protocol. Other protocols may be used and following Intuit adoption, this section will be revisited as necessary.

	Code
	Meaning

	200 OK
	Request Succeeded

	400 Bad request
	Bad request

	401 Unauthorized
	Unauthorized request

	403 Forbidden
	The resource is forbidden

	404 Not found
	Resource not found

	500 Internal Server Error
	General error

	503 Service unavailable
	Service unavailable

Flex clients can process only HTTP status code 200. The server has to return 200s for all conditions (both success and failure) or the Flex clients can’t access the response body to obtain the detailed message. To enable Flex and other like clients, a special query parameter can be used to signify that only HTTP “200” response codes are returned. The format of the query string parameter is "only200s=true".

For example: <baseurl>/v3/ company/<companyid>/<entityname>?only200s=true

[bookmark: _Toc324333746]Single Entity
The following URI formats represent the CRUD operations that are associated with a single entity.

[bookmark: _Toc324333747]CRUD Request URI formats
	Operation
	Style/Example

	Read
(GET & POST)
	<baseurl>/v3/ company/<companyid>/<entityname>/<entityid>

https://qbo.intuit.com/qbo1finance.intuit.com/v3/ company/1234/customer/12

Note: No body required for POST except when using Flex clientIt has been noted that Flex clients seem to remove headers when sending an HTTP GET

	Create
(POST)
	<baseurl>/v3/ company/<companyid>/<entityname>[?requestid=<rid>]

https://qbo.intuit.com/qbo1finance.intuit.com/v3/ company/1234/customer?requestid=123

	Update
(POST)
	<baseurl>/v3/ company/<companyid>/<entityname>[?requestid=<rid>]

https://qbo.intuit.com/qbo1finance.intuit.com/v3/ company/1234/customer?requestid=123

	Delete
(GET & POST)
	<baseurl>/v3/ company/<companyid>/<entityname>/<id>?operation=delete[&requestid=<rid>][&cascade=<boolean>]

https://qbo.intuit.com/qbo1finance.intuit.com/v3/ company/1234/customer/12?operation=delete&requestid=123&cascade=true

NOTE: If a “true” delete isn't preformed and undelete functionally is externally exposed, it was decided to use an active/inactive update strategy and not support delete to keep consistent with IDS. This functionality has to be clearly documented in the entities and the default functionality for related items (like query) must also be clearly documented. For query on list items, the query will always default to "active=true" unless it is explicitly set to another state by the user.

Note: No body required for POST except when using Flex client

	Void
(GET & POST)
	<baseurl>/v3/ company/<companyid>/<entityname>/<id>?operation=void[&requestid=<rid>]

https://qbo.intuit.com/qbo1finance.intuit.com/v3/ company/1234/payment/11?operation=void&requestid=123

This is an example of application specific service operation that exposes custom domain functionality.

Note: No body required for POST except when using Flex client

[bookmark: _Toc324333748]SparseUpdate Request URI format
	Operation
	Style/Example

	SparseUpdate
(POST)
	<baseurl>/v3/ company/<companyid>/<entityname>?operation=sparse&[requestid=<rid>]

https://qbo.intuit.com/qbo1finance.intuit.com/v3/ company/1234/customer?operation=sparse &requestid=123

The following rules apply to SparseUpdate:
· Partial updates need to supply a query string parameter ("operation=sparse") set the “sparse” attribute on the IntuitEntity to signify the operation because the serviceit can’t be inferred the operation.
· If any element needs to be NULL-ed ourt or represent an empty string ("") a full entity Update must be used instead of SparseUpdate. Nulling out data adds complexity to the request because we would need to develop a meta-language to determine what the user is trying to do. For example, if a user wants to delete an address associated to a customer.
· SparseUpdate of sub-entity collections (e.g. Physical Address, ContactInfo, Line, etc.) is not supported due to the ambiguity pertaining to the other items that exist in the collection. When updating a sub-entity collection the entire collection must be specified for example:
· To Add to a sub-entity collection: send the entire collection with the item added without specifying an Id
· To Delete from a sub-entity collection: send the entire collection, less the item being deleted
· To Update a sub-entity collection: send the entire collection with the item's fields updated while specifying an Id
There are specific rules for SparseUpdate that pertain to sub-entities (e.g. Physical Address & ContactInfo). These rules will be documented based on the sub-entity. For example: Line1 of a PhysicalAddress can't be modified without specifying the whole sub-entity.

· When updating an entity using the SparseUpdate, only the fields that were modified a fully populated entity will be returned.

[bookmark: _Toc324333749]Request Body Data Structure
The request body will contain a single FDM entity.

For Example: A create customer request’s body would look something like:
<Customer>
 <isOrganization>false</isOrganization>
 <Title>Mr</Title>
 <GivenName>John</GivenName>
 <MiddleName>J.</MiddleName>
 <FamilyName>Smith</FamilyName>
 <Suffix>Jr</Suffix>
 <FullName>John J. Smith</FullName>
 <DisplayName>John J. Smith</DisplayName>
 <PrintOnCheckName>John J. Smith</PrintOnCheckName>
</Customer>

[bookmark: _Toc324333750]Successful Response Data Structure
 For Read, Create, Update & Operations
A fully populated entity will be returned.

<IntuitResponse requestId="123" time="2006-05-04T18:13:51.00-0800">
 <Customer>
 <Id>2123</Id>
 <SyncToken>0</SyncToken>
 <GivenName>Srini</GivenName>
 </Customer>
</IntuitResponse>

For SparseUpdate Operation
An entity populated with the same fields that were sent will be returned. A fully populated entity will be returned.

<IntuitResponse requestId="123" time="2006-05-04T18:13:51.00-0800">
 <Customer sparse=”true”>
 <Id>2123</Id>
 …
 </Customer>
</IntuitResponse>

For Delete Operation
Only the entity Id will be returned with the appropriate entity status.

<IntuitResponse requestId="123" time="2006-05-04T18:13:51.00-0800">
 <Customer status=”Deleted”>
 <Id>2123</Id>
 </Customer>
</IntuitResponse>

For Void Operation
Only the entity Id will be returned with the appropriate entity status.

<IntuitResponse requestId="123" time="2006-05-04T18:13:51.00-0800">
 <Payment status=”Voided”>
 <Id>2123</Id>
 </Payment>
</IntuitResponse>

[bookmark: _Toc324333751]Error Response Data Structure
<IntuitResponse requestId="123" time="2006-05-04T18:13:51.00-0800" >
 <Fault type="Validation">
 <Error code="100" element="firstname">
 <Message>Length exceeds limit</Message>
 <Detail>Length of the field exceeds 21 chars</Detail>
 </Error>
 <Error code="100" element="postalcode">
 <Message>Illegal number format</Message>
 <Detail>ZipCode should be a number with at least 5 digits</Detail>
 </Error>
 </Fault>
</IntuitResponse>

[bookmark: _Toc324333752]Query/Search language
There is one language that is used by both Query and Search functions. The functions may support different subsets of the language, but the implemented operations will use the same nomenclature which is a subset of the Ansi SQL Standard for the “Select” statement . FDM element names, operations and connectors are lexical tokens and by definition are case insensitive. The full Backus-Naur Form of the Query/Search Language is an artifact that accompanies this specification, but a more readable representation is below.

[bookmark: _Toc324333753]Simple Representation of Query/Search Language
<Multiple Query Syntax> = <Query Syntax> [;<Query Syntax>]*

<Query Syntax> = QUERY SELECT <ResponseSubset> FROM <IntuitEntity> [WHERE <WhereClause>] [ORDERBY <OrderByClause>] [START STARTPOSITION =eq <Number>] [SIZE MAXRESULTS =eq <Number]

<ResponseSubset> = * | <PredefinedPropertySet> | <PropertyName>[,<PropertyName>]*

<IntuitEntity> = Customer | Vendor | Invoice | etc

<WhereClause> = [NOT] <PropertyName> [<Operator> <Value> [and <WhereClause>]*]

<OrderByClause> = <PropertyName> [ASC | DESC] [, <OrderByClause>]*

<PredefinedPropertySet> = NameAndId | Overview| HeaderLite | HeaderFull |etc

<Operator> = <Operator> = = | <> | in | > | < | >= | <= | etc
= | eq| neq| in | gt | lt | gte| lte| etc

<PropertyName> = Property Name as defined in the Data Model

<Value> = (<Value> [,<Value>]*) | '<value in quote>'| <value without quote>| <value containing wildcard chars>

<Number> = represents integer number

Query language is case insensitive including the values, for example
QUERY select * from Customer where FullName eq = 'Greg' start startposition eq = 10
is same as
query select * from customer where fullName eq = 'GREG' startposition start eq= 10

Example for mMultiple queries in a single request will not be supported at this timey
 query * from customer where lastmodifiedtime gt '2011-10-10T10:10:10-0700'; query * from invoice where lastmodifiedtime gt '2011-10-10T10:10:10-0700'

[bookmark: _Toc324333754]Query
The Query function is the method for creating a guided query against an entity. Using the Query a user can specify response attributes, selection criteria and sort order. It is similar to a pared down SQL query select statment with constraints in place to ensure the request doesn’t overload server-side resources.

The query for entities will be supported by a single endpoint and will support the execution of a single query. This limitation can be revisited in the future if required. When multiple queries need to be executed in a single request a Batch operation should be used. multiple queries can be represented separated by semicolons. To help ensure Query operations respond in a timely fashion the maximum number of concatenated queries is 5.
·

· For entities that use an active/inactive update strategy and don’t support delete, the query will always default to "active=true" unless it is explicitly set to another state by the user.

· For queries that use "*" to specify the response fields in a query, the default response set will be returned. If the user wants more than the default data, they can specify "*, BalanceWithJobs". The default response fields will be clearly documented in the Developer documentation.

· If a custom response is specified then the “sparse” attribute of the IntuitEntity will be set to “true”. If not, then a fully populated entity will be returned.

· For queries that receive an inappropriate where clause an error will be returned from the query service. It was decided that this was the best approach because the service would be returning more data than the user wanted and better for scalability not to execute an erroneous query.

The Query supports all of the Intuit Languages operations except:
· Or in the Where clause

The response to a query is wrapped in a QueryResponse which is placed inside an IntuitResponse. A QueryReponse can have the following attributes (as defined by the XSD):
· “startposition start” – - Specifies the starting object position to be returned for the given query. For example: If the startPosition=100, the 1st object to be returned in the results will be the 100th object returned for the given querythe starting count of the response if the paging operations are used (defaults to 1).
· “sizemaxresults” - Specifies the maximum number of records to be returned for this query. The number of results returned may be less than the max, if the query results have been exhausted given the startPosition– the size of the response (defaults to 50 with a maximum of 500 and may be adjusted based on business needs).
· “count” – the number of rows that the query will return. This functionality needs to be researched as part of Items for Later Consideration.

A QueryReponse can have a list of following elements (as defined by the XSD):
· Fault(s)
· IntuitEntity(s)

[bookmark: _Toc324333755]Request URI format
	Operation
	Style/Example

	Query
(GET)
	<baseurl>/v3/companyid/query?query=<query_statement>

https:// qbo.intuit.com/qbo1finance.intuit.com/v3/1234/query?query=queryselect%20*%20from%20customer%20where%20lastmodifiedtime%20%3E%202011-08-10T10%3A20%3A30-0700%3B%20

	Query
(POST)

	<baseurl>/v3/ company/<companyid>/query

https:// qbo.intuit.com/qbo1finance.intuit.com/v3/ company/1234/query

Request content-type=application/text

[bookmark: _Toc324333756]POST Request Body Structure
query select * from customer where lastmodifiedtime > 2011-08-10T10:20:30-0700;
query select * from invoice where lastmodifiedtime > 2011-08-10T10:20:30-0700;

[bookmark: _Toc324333757]Successful Response Data Structure
<IntuitResponse time="2006-05-04T18:13:51.00-0800">
 <QueryResponse startPositionStart="10" SizemaxResults="2">
 <Customer>
 <Id>2123</Id>
 <SyncToken>0</SyncToken>
 <GivenName>Srini</GivenName>
 </Customer>
 <Customer>
 <Id>2124</Id>
 <SyncToken>0</SyncToken>
 <GivenName>Peter</GivenName>
 </Customer>
 </QueryResponse>
 <QueryResponse Start startPosition="10" SizemaxResults="2">
 <Invoice>
 <Id>12</Id>
 <SyncToken>0</SyncToken>
 <TotalAmt>220</TotalAmt>
 </Invoice>
 <Invoice>
 <Id>13</Id>
 <SyncToken>0</SyncToken>
 <TotalAmt>120</TotalAmt>
 </Invoice>
 </QueryResponse>
</IntuitResponse>

[bookmark: _Toc324333758]Error Response Data Structure
One Query response per query
<IntuitResponse time="2006-05-04T18:13:51.0Z">
 <QueryResponse>
 <Fault type="Validation">
 <Error code=”100” element="query">
 <Message>OBJECT name not available </Message>
 </Error>
 <Error code="300" element="query">
 <Message>Time value is incorrect</Message>
 </Error>
 </Fault>
 </QueryResponse>
 <QueryResponse>
 <Fault type="Validation">
 <Error code=”100” element="query">
 <Message>OBJECT name not available</Message>
 </Error>
 </Fault>
 </QueryResponse>
</IntuitResponse>

[bookmark: _Toc324333759]Report
The Report function is the method for invoking the Domain’s preset canned reports that are required to meet the business needs.

[bookmark: _Toc324333760]Report Syntax
Report Syntax = REPORT <ReportName> WITH <ReportWhereClause>

<ReportName> = ProfitAndLossSummary|ProfitAndLossDetail| BalanceSheetSummary| BalanceSheetDetail | etc…

<ReportWhereClause> = <ReportPropertyName> <Operator> <Value> [and <ReportWhereClause>]

[bookmark: _Toc324333761]Request URI format
	Operation
	Style/Example

	Report
(GET)
	<baseurl>/v3/ company/<companyid>/report?report=REPORT%20<report-type>%20<report_statement>

https:// qbo.intuit.com/qbo1finance.intuit.com/v3/ company/1234/report?query=REPORT%20profitandloss%20with%20startdate%3D2010-01-01T00:00:00-0700

	Report
(POST)

	<baseurl>/v3/ company/<companyid>/report

https:// qbo.intuit.com/qbo1finance.intuit.com/v3/ company/1234/report

Request content-type=application/text

[bookmark: _Toc324333762]POST Request Body Structure
REPORT profitandloss with startdate=”2010-01-01T00:00:00-0700”

[bookmark: _Toc324333763]Successful Response Data Structure
<IntuitResponse time="2011-10-10T10:20:30-0700">
 <Report domain="QBO" name="ProfitAndLoss">
 <Header>
 <ReportBasis>Cash</ReportBasis>

 </Header>
 <ColDesc>
 <ColTitle>AccountName</ColTitle>
 <ColType>ids_String</ColType>

 </ColDesc>
 <Section>
 <Text>Income </Text>
 <DataRow>
 <ColData>Services</ColData>
 <ColData>435</ColData>
 </DataRow>
 <Summary>
 <ColData>Total Income</ColData>
 <ColData>435</ColData>
 </Summary>
 </Section>
 <Section>

 </Section>
 </Report>
</IntuitResponse>

[bookmark: _Toc324333764]Error Response Data Structure
One Query response per query
<IntuitResponse time="2006-05-04T18:13:51.0Z">
 <ReportResponse>
 <Fault type="Validation">
 <Error code=”100” element="query">
 <Message>OBJECT name not available </Message>
 </Error>
 <Error code="200" element="query">
 <Message>Time value is incorrect</Message>
 </Error>
 </Fault>
 </ReportResponse>
</IntuitResponse>

[bookmark: _Toc324333765]Change Data Query
The highest volume request in a service that uses polling for data freshness is the one that determines if data has been modified. This request must respond very quickly and use limited resources in order to scale to accommodate the load.

The Change Data Query is used when client polls for data changed on the server, typically using time intervals between requests.

The basic concept is that client requests multiple entities in one submit request, thus avoiding multiple submits and multiple authentication.

In order to scale, modified data is retrieved as part of choreography of requests.
· One request to retrieve the latest modified datetime stamp of the entities. The user will then compare the datetimes of the entities and determine if a data refresh is warranted. This should be a very quick/efficient request.
· If the user determines that data needs to be refreshed, a second request to the query service (or convenience endpoint) is made and the appropriate modification datetime is specified for the targeted entities.

[bookmark: _Toc324333766]First Request URI format
Method: GET & POST
<baseurl>/v3/ company/<companyid>/changedata

For example: https://qbo.intuit.com/qbo1finance.intuit.com/v3/ company/1234/changedata

[bookmark: _Toc324333767]Successful Response Data Structure
<IntuitResponse time="2011-10-11T18:13:51.00-0800">
 <ChangeData>
 <Data name="Invoice" time="2011-10-11T10:20:30-0800"/>
 <Data name="Customer" time="2011-10-11T10:20:30-0800"/>

 </ChangeData>
</IntuitResponse>

[bookmark: _Toc324333768]Second Request URI format
This request uses the standard Query endpoint to execute the Change Data request to retrieve the modified data. This request has more stringent throttling thresholds (based on business needs) than the first query to ensure resources aren’t overloaded by clients that poll at very short intervals.

Note: Deleted/Voided items can be included in the response thru the query’s where clause. In the Response these entities will be decorated by the IntuitEntity “status” attribute (e.g. status=”Deleted” or status=”Voided”).

Method: GET & POST
<baseurl>/v3/ company/<companyid>/query

For example: https://qbo.intuit.com/qbo1finance.intuit.com/v3/ company/1234/query

[bookmark: _Toc324333769]Request Body Structure
content-type=application/text

Entities in ('Invoice', 'Customer', 'Vendor', 'SalesReceipt') and LastModifiedTime gt '2011-10-10T10:20:30-0700'

Note: Multiple queries can also be used, if desired.
QUERY * from Customer where LastModifiedTime gt '2011-10-10T10:20:30-0700' and deleted eq true;
QUERY header from Invoice where LastModifiedTime gt '2011-10-10T10:20:30-0700'

[bookmark: _Toc324333770]Successful Response Data Structure
<IntuitResponse time="2006-05-04T18:13:51.00-0800">
 <QueryResponse>
 <Customer>
 <Id>2123</Id>
 <SyncToken>0</SyncToken>
 <GivenName>Srini</GivenName>
 </Customer>
 <Customer>
 <Id>2124</Id>
 <SyncToken>0</SyncToken>
 <GivenName>Peter</GivenName>
 </Customer>
 <Customer status=”Deleted”>
 <Id>456</Id>
 </Customer>
 <Invoice>
 <Id>12</Id>
 <SyncToken>0</SyncToken>
 <TotalAmt>220</TotalAmt>
 </Invoice>
 <Invoice>
 <Id>13</Id>
 <SyncToken>0</SyncToken>
 <TotalAmt>120</TotalAmt>
 </Invoice>
 </QueryResponse>
</IntuitResponse>

[bookmark: _Toc324333771]Error Response Data Structure
<IntuitResponse time="2006-05-04T18:13:51.00-0800">
 <Fault type="ValidationError">
 <Error code="100">
 <Message>OBJECT name not available </Message>
 </Error>
 <Error code="100">
 <Message>ZipCode should be a number with at least 5 digits</Message>
 </Error>
 </Fault>
 <Fault type="ValidationError">
 <Error code="`100">
 <Message>OBJECT name not available </Message>
 </Error>
 <Error code="100">
 <Message>ZipCode should be a number with at least 5 digits</Message>
 </Error>
 </Fault>
</IntuitResponse>

[bookmark: _Batch_Entities/Operations][bookmark: _Toc324333772]Batch Entities/Operations
Batch operations are used to change various items at once to increase throughput and decrease network round trips and chattiness.

Batch operations are defined by the following:
· Not REST-Like and does not follow the Resource Oriented Architecture (ROA) pattern
· Each item in a Batch request is distinct
· Each item in a Batch request can target any entity and execute one of the following operations (Create, Update, SparseUpdate, Delete, Void, Query or Report)
· A Fault on one BatchItem doesn’t stop/interfere with other BatchItems
· Batches are normally will be executed sequentially, but with order of execution is not guaranteed.
· Once authenticated, all the BatchItems will return results

Currently Services V3 doesn’t support creating entities and referencing that entity in the same Batch (e.g. A "Create Customer" is in one BatchItem and then a “Create Invoice" tries to reference that Customer). This functionality needs to be researched as part of Items for Later Consideration.

To help ensure Batch operations respond in a timely fashion and resources aren’t overwhelmed, the number of BatchItem requests will be limited to 25 and may be adjusted based on business needs.
[bookmark: _Toc324333773]Request URI format
Method: POST
<baseurl>/v3/ company/<companyid>/batch[?requestid=1234]

https://qbo.intuit.com/qbo1finance.intuit.com/v3/ company/1234/batch?requestid=1234

[bookmark: _Toc324333774]Request Body Structure
BatchItem can contain (as defined by the XSD):
· IntuitEntity (base of all entities)
· Query
· Report

BatchItem attributes (as defined by the XSD):
· “operation” - Operation to be performed if it can't be inferred from the data. Operation needs to be specified for “Delete”, “Void” & “Sparse”.
· “bId” – bId will be used as a reference to coordinate inter-object activates (future) and must be unique within a Batch operation. Storage for this field should be able to accommodate 50 characters to enable the use of UUID generating mechanisms.

content-type=application/xml
<IntuitBatchRequest>
 <BatchItem bId="bid1">
 <Customer>
 <isOrganization>false</isOrganization>
 <Title>Mr</Title>
 <GivenName>Mark</GivenName>
 <MiddleName>Arch </MiddleName>
 <FamilyName>Basler </FamilyName>
 <Suffix>Jr</Suffix>
 <FullName>Mr Mark Arch Basler Jr </FullName>
 <DisplayName>Mark Basler</DisplayName>
 <PrintOnCheckName>Mark Basler </PrintOnCheckName>
 </Customer>
 </BatchItem>
 <BatchItem bId="bid2">
 <Invoice >
 <Header>

 </Header>
 <Line>
 ...
 <Line>
 </Invoice>
 </BatchItem>
 <BatchItem bId="bid3" operation="delete">
 <Invoice >
 <Id>10</Id>
 </Invoice>
 </BatchItem>
 <BatchItem bId="bid4" operation="void">
 <Invoice >
 <Id>11</Id>
 </Invoice>
 </BatchItem>
 <BatchItem bId="bid5">
 <Query query="query * from customer";query * from invoice"/><Query>query * from customer; query * from invoice;</Query>
 </BatchItem>
 <BatchItem bId="bid6">
 <Report report="REPORT ProfitAndLoss with DateMacro eq All"/><ReportQuery>REPORT ProfitAndLoss with DateMacro eq All</ReportQuery>

</BatchItem>
</IntuitBatchRequest>

[bookmark: _Toc324333775]Response Data Structure
A BatchItemReponse is wrapped within and IntuitResponse and can contain the following elements (as defined by the XSD):
· IntuitEntity (base of all entities)
· Fault
· QueryResponse
· Report

A BatchItemResponse can have the following attributes:
· “bId” - request id for specific request in batch

<IntuitResponse requestId="1234" time="2006-05-04T18:13:51.00-0800">
 <BatchItemResp bId="bid1">
 <Fault type="Validation">
 <Error code="101">
 <Message>Length of the field exceeds 21 chars </Message>
 </Error>
 <Error code="201">
 <Message>ZipCode should be a number with at least 5 digits</Message>
 </Error>
 </Fault>
 </BatchItemResp>
 <BatchItemResp bId="bid2">
 <Invoice>

 <Invoice>
 </BatchItemResp>
 <BatchItemResp bId="bid3">
 <Invoice status="Deleted">
 <Id>10</Id>
 </Invoice>
 </BatchItemResp>
 <BatchItemResp bId="bid4">
 <Invoice status="Void">
 <Id>11</Id>
 </Invoice>
 </BatchItemResp>
 <BatchItemResp bId="bid5" >
 <QueryResponse>
 ...
 </QueryResponse>
 <QueryResponse>
 ...
 <QueryResponse>
 </BatchItemResp>
 <BatchItemResp bId="bid6">
 <Report>
 ...
 </Report>
 </BatchItemResp>
 </IntuitResponse>

[bookmark: _Toc324333776]FMS Data Model Payload (FDM)
The FDM is the least common denominator that represents the entities for data exchange between the user and the service endpoint. FDM is used in most service responses and in the request’srequests for the single entity operations.

As part of V3, an IntuitAnyType has been added that utilizes the xsd:any to provide extensibility. This mechanism is not meant to replace good engineering research/due-diligence and should be used as an exception mechanism to meet business requirements in the short term. A process still needs to be devised on how to migrate the data that uses this exception case into a future version of the FDM.

All schemas have the same namespace to promote adoption and ease of use. This was a lesson from V2 where developers found it hard to use schemas with different namespaces (e.g. "http://schema.intuit.com/finance/v3"). As a general naming convention, elements are specified in upper-camel case (Pascal case) and attributes are specific in lower-camel case.

The FDM is one of the main artifacts in FMS’s contract with the user and changes must be backwards compatible. More information is available in the Versioning section.

Since the Service V3 Schema is large and can’t be viewed effectively without an IDE, we chose to deliver the Service V3 FDM artifact as an attachment to this Specification.

The Service V3 is comprised of the following schema definitions:
· IntuitBaseTypes.xsd – Intuit Base types like IntuitEntity, PhysicalAddress and ContactInfo
· IntuitNamesTypes.xsd – Intuit types that represent “Named” types like Customer, Vendor and Employee.
· Finance.xsd – Intuit types that represent the financial domain like Account, Invoice and Estimate
· IntuitRestServiceDef.xsd – Intuit RESTful data types like IntuitResponse and Query
· Report.xsd – Intuit Report types like Report, ReportHeader and DataRow

[bookmark: _Toc321726309][bookmark: _Toc322014558][bookmark: _Toc324333777]
[bookmark: _Toc324333778]IntuitEntity Attribute Decorators
In a response, an IntuitEntity (e.g. Customer) can have the following attribute decorations to describe the encapsulated data (as defined by the XSD enumeration):
· status=
· “Deleted” – represents an entity that is deleted
· “Voided” – represents an entity that has been voided.
· “Draft” – represent an entity that has a draft status.

· sparse=”true” – represents an entity that is populated in a sparse manner and isn’t a full object representation.

For example:
<Customer status="Deleted">
 <Id>123</Id>
</Customer>

[bookmark: _Toc324333779]Primary Key (Id) Representation
All IntuitEntity primary keys (Id) are opaque values and their construction may differ between domains. Regardless of the primary keys construction, the entire key must to be used in communication with the owning domain’s services.

[bookmark: _Toc324333780]Entity Fields
Some fields that comprise the entities may be InputOnly, ReadOnly or Unsupported by the specific endpoint. These fields will be clearly documented in the Schemas and in Developer documentation. If these fields are inappropriately populated in the Request, the service endpoint will ignore these values and process the requests as if they weren’t entered. It was determined that this would be the best action to take and facilitates round-tripping of data (Perform a Read on an entity, modify the data, send an update request).

[bookmark: _Toc324333781]Field Names
A key goal across the different enties & schemas is consistency. Where common names and abbreviations are used, the naming conversion should be proliferated as much as practical without negatively impacting the object being represented.

[bookmark: _Toc324333782]Date & DateTime Formats
Date & DateTime exchange formats will follow the XML Schema standard for maximum client compatibility. We believe it is better to use this standard as a guideline (including time zones) rather than going to a Unix Epoch (milliseconds since 1/1/1970 UTC format). In particular, while milliseconds since epoch is “mostly” standardized, there are some systems which instead use different time intervals (e.g. seconds instead of milliseconds) and some have even shifted the epoch (including Apples Objective-C and Cocoa).

To facilitate globalization FMS V3 Date fields will be represented as a xsd:DateTime with time zone to provide the most accurate accounting. If we use only xsd:Date, ambiguity can arise as we cross multiple time zones or the international date line. For example, 2012-10-10T12:00:00-08:00 (noon on 10 October 2012, PST).

[bookmark: _Toc324333783]Domain Specific Entities
There may be cases where convenience/product specific services are exposed by a domain to meet the business needs. These services may need to create custom data transfer objects to facilitate use which is a supported approach.

[bookmark: _Toc321726316]

[bookmark: _Toc322014565][bookmark: _Toc324333784]
[bookmark: _Toc321726317][bookmark: _Toc322014566][bookmark: _Toc324333785]
[bookmark: _Toc321726318][bookmark: _Toc322014567][bookmark: _Toc324333786]
Customer entity content Reviewer question:
 Should all address data that is associated to the Customer be stored in “OtherAddresses” with the data in “BillingAddress” & “ShippingAddress” be replicated
__OR__
Should the data be distributed (not replicated) between from “BillingAddress”, “ShippingAddress” & “OtherAddresses and to get a full list of addresses, the user needs to pull the different elements together?
[bookmark: _Toc321726323][bookmark: _Toc322014572][bookmark: _Toc324333791]
There is a similar question with “OtherContactInfo” and the phone, fax and email elements.
[bookmark: _Versioning]

[bookmark: _Versioning_1][bookmark: _Toc324333793]Versioning
A contract versioning strategy is a complex subject that must be contrived in a holistic fashion for consistency and to guarantee compatibility. All publically exposed contracts must be considered to ensure that we don't negatively impact our users. When interfaces are revised, our users must be given enough time to plan the migration and have their software go through a proper development lifecycle. The typical support period is usually between 18-24 months. Versioning has been broken down into two categories, FDM and Service Endpoints.

[bookmark: _Toc324333794]FDM Versioning
[bookmark: _Toc324333795]Backward compatible changes
Backward compatible changes to FDM are additive and can be released at any time without changing the XSD's namespace. The following changes are backward compatible:
· Adding a new FDM type.
· Adding a new FDM type by extending an existing type.
· Adding elements to the IntuitAnyType element of the FDM entities.

[bookmark: _Toc324333796]Breaking Changes
All other changes to FDM, that aren't listed above, are considered breaking changes. This would require an update to the version in the namespace of the FDM's XSD, each time the FDMs is released. This approach is practiced successfully by many vendors in the services industry and the recommended practice is many books/papers on services.

For example:
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns=”http://www.intuit.com/sb/cdm/v3” targetNamespace="http://www.intuit.com/sb/cdm/v3" elementFormDefault="qualified" attributeFormDefault="unqualified">

[bookmark: _Toc324333797]Service Endpoints Versioning
The version for service endpoints is represented in the URI of the request.

For example:
<baseurl>/v3/ company/<companyid>/<entityname>/<entityid>

Note: There are cases where behavioral bug fixes (e.g. security) will need to be rolled out that may alter endpoint behavior. Since it is a bug fix, backwards compatibly isn’t guaranteed, but there still needs to be a mechanism in place that gives the user time to adopt the changes. This issue in known and has been listed in the “Items for Later Consideration” section.

[bookmark: _Items_for_Later][bookmark: _Toc324333798]Items for Later Consideration

To facilitate a faster time-to-market of the Services V3 specification, the following items are being deferred for later consideration. It is believed that we don’t have adequate user requirements at this time and we didn’t want to hold the rest of the Services V3 specification.

· Support for HTTP PUT & DELETE (has been request)
· Complex Batches of Batches
· Change Data Asynchronous Notification Mechanism
· The entity service will expose an asynchronous notification mechanism (e.g. JMS Topic) that domains can subscribe to. Notifications will be published at an entity level and should be associated with the operation (CUDV) that initiated it. In the short term, these notifications with be in XML to enable external parties (non-java), but other formats may be added to meet business requirements. We also need to address subscriptions by realm bound users to enforce realm separation.
· Search
· Service Modifications to address behavioral bugs
· Whether it is incorrectly implemented or design details not thought through, from time to time we may need to modify the Service API to fix a bug behavior. For example a bug that let sent a discount as a percentage versus a decimal.
· XSD:any type exception mechanism use and the process of migrating data that uses this exception mechanism to appropriate FDM representation.
· The different ways to send invoices through email. Through UI or through the mobile client (need to define use case)
· Add affected objects as a potential response. For example if you create an invoice, the response should have invoice and customer (balances) (need to define the use cases to bound the scope)
· Custom populated responses from SparseUpdates. This could be done using a query string param, but always send back Id and SyncToken.
· QueryResponse “count” attribute that holds the number of rows that the query can return.
· The Intuit wide tracking Id (e.g. “intuit_tracking_id”)

[bookmark: _Appendix_A:_][bookmark: _Toc324333799]Appendix A: Detailed Error Codes

[bookmark: _Toc324333800]General Error Codes
	Error Code
	ErrorCode as String
	Message
	Explanation

	600
	DUPLICATE_REQUEST_ID
	RequestId already exists in the system, duplicate request is detected
	RequestId is duplicate and already exists int the system

	610
	OBJECT_NOT_FOUND
	ID requested for the object does not exists in the system
	ID could not be found

	620
	TXNID_CAN_NOT_BE_LINKED
	Transaction ID sent in the request can't be supported
	Transaction ID supplied with the request can not be linked

	630
	DUPLICATE_OBJECT
	Already object with some properties exist and it violates the unique constraint of the object
	For example, Name already exists for a customer

	700
	PARENT_REFERENCE_INVALID
	Parent referred is not valid reference
	Parent referenced in the request is not valid

	800
	CAN_NOT_DELETE_OBJECT
	Object cannot be deleted due to dependencies not deleted
	Object cannot be deleted because other objects refer to them

	1000
	OPERATION_FAILED
	Operation failed, see details for error
	Object operation failed, see detailed error message

	1010
	CREATE_FAILED
	Object creation failed, see details for error
	Object creation failed, detailed error message gives the details

	1020
	UPDATE FAILED
	Object update failed, see details for error
	Object update failed, detailed error message

[bookmark: _Toc324333801]Validation Error Codes
	Error Code
	ErrorCode as String
	Message
	Explanation

	2000
	INVALID_OBJECT_NAME
	Invalid object name in the request
	Invalid or unsupported object name in the API

	2010
	INVALID_FIELD_NAME
	Invalid Field Name in the Request
	Request has invalid or unsupported field

	2020
	INVALID_REQUEST_REQUIRED_PARAM_MISSING
	Invalid Request due to Required Param is missing
	Required param missing, need to supply the required value for the API

	2030
	INVALID_ID_FORMAT
	Invalid ID format
	ID format available in the request in not supported

	2040
	INVALID_STRING
	Invalid String
	String contains unsupported chars

	2050
	INVALID_STRING_LENGTH
	Invalid String Length
	String length exceeds the supported length by the specification

	2060
	INVALID_DATE_FORMAT
	Invalid date format
	Date format is not accepted by the API

	2070
	INVALID_DATE
	Invalid date
	Date supplied is invalid, the format may be correct but value is not supported by the API

	2080
	INVALID_NUMBER_FORMAT
	Invalid Number format
	Number format supplied is invalid

	2090
	INVALID_NUMBER
	Invalid Number
	Number supplied may be correct form but value is not supported by the API

	2100
	INVALID_DECIMAL_FORMAT
	Invalid decimal format
	Decimal format supplied is invalid

	2110
	INVALID_DECIMAL
	Invalid decimal
	Decimal supplied may be correct form but value is not supported by the API

	2120
	INVALID_TYPE
	Invalid type
	Type is not compatible or supported by the API

	2130
	INVALID_REQUEST_ID_FORMAT
	Invalid request id format
	The format of request Id is invalid and not supported by the API

	2140
	INVALID_AMOUNT
	Invalid Amount value
	Amount value supplied is not supported by the API

	2150
	INVALID_PERCENT
	Invalid Percent value
	Invalid percent value, not supported by the API

	2160
	INVALID_QUANTITY
	Invalid Quantity value
	Invalid quantity value, not supported by the API

	2170
	INVALID_ENUMERATION
	Invalid enumeration value
	Invalid enumeration value, not supported by the API

	2180
	INVALID_STRING_RANGE
	Invalid string range
	Invalid String range (don't know what it is but QBD needs it)

	2190
	INVALID_DATE_RANGE
	Invalid date range
	Invalid date range

	2500
	INVALID_REF_OBJECT_ID
	Object ID for the Referenced field is invalid, pl see details for more info
	Referenced object like ItemReference ID in Invoice is not valid

	2600
	INVALID_REQUEST_CONFLICT_ELEMENT_IN_REQUEST
	Conflict elements found in the request
	Conflict element found in the request causing validation error

	3000
	INVALID_CUSTOM_FIELD
	Custom Field specified is not valid for this object
	Invalid or non-existent custom field

	4000
	PARSER_FAILURE
	Parsing found query contains invalid string
	Query string is invalid, see details

[bookmark: _Toc324333802]Authentication and Authorization Error Codes
	Error Code
	ErrorCode as String
	Message
	Explanation

	100
	AUTHENTICATION_FAILURE_GENERAL
	Authentication has failed
	The credentials supplied is invalid

	110
	AUTHENTICATION_FAILURE_OAUTH_ERROR
	Authentication has failed due to OAUTH token
	The credentials supplied is invalid and failure due to OAUTH token

	120
	AUTHORIZATION_FAILURE_GENERAL
	User not authorized to perform the operations
	The user is valid user but not authorized to perform requested operation

[bookmark: _Toc324333803]Unsupported Error Codes
	Error Code
	ErrorCode as String
	Message
	Explanation

	500
	UNSUPPORTED_OPERATION
	Unsupported operation requested
	Unsupported operation requested

[bookmark: _Toc324333804]Specific Error Codes
	Error Code
	ErrorCode as String
	Message
	Explanation

	5000
	DEPRECATED_FIELD
	Deprecated field is used in the request
	Deprecated field is used in the request

	5010
	STALE_OBJECT
	Request for update of stale object
	Stale object requested for update, client needs to refresh the object

[bookmark: _Toc324333805]Severe Error Codes
	Error Code
	ErrorCode as String
	Message
	Explanation

	10000
	INTERNAL_ERROR
	API failed due to internal error
	Internal error occurred while executing the API

	10100
	RESULT_SET_BIG
	Result set of query is too big
	Result could not be returned as the result set is large

	10200
	COMPANY_RESET
	Company has been reset, requests for CUD is stale
	company reset occurred

[bookmark: _Toc324333806]Appendix B: Comparison of V2 and V3 Differences
	Topic
	V2 Services
	V3 Services

	Emphasis
	Common Data Model (FDM) between QBO & QBD, however we had difference in data representation
	Emphasis on Services contract/specification. Contract supports data format that is common to FMS domain

	FDM
	More emphasis on FDM
	More emphasis on Services Contract

	Wire format
	Different wire formats for QBO and QBD
	Wire formats are the same for FMS domains

	Data definition format
	The XSD has been defined with less ability to expand without using new data structures to maintain backwards compatibility
	XSD has been defined with the ability to add new "elements" without breaking backward compatibility

	Ability to add missing elements for an entity
	Introduces breaking changes in QBD, introduces new derived object in QBO
	"xsd:any" element is introduced in every entity definition to allow expandability

	Services Orientation
	CRUD oriented entity service
	More service orientation. More than just CRUD services, associated activity services are also exposed.

	Names of entities
	Entity names are different in QBO and QBD (terms in QBD, SalesTerms in QBO)
	Entity names are the same and address in a similar fashion

	Unified Tax Model support
	Different tax models and data representation for tax/discounts in QBO and QBD
	Supports uniformed way of addressing tax and discounts in FMS domain

	Submitting services requests
	Different end points and different ways of addressing the on-the-wire data model.
	Addressing services is exactly the same for any FMS domain (QBO and QBD), the on-the-wire data formats are the same.

	Query service
	Different ways of addressing QBO & QBD, returns data in different formats (e.g. request structure is XML in case of QBD, and name-value parameters in QBO)
	Uniform way to address query service for any FMS domain. Request formats are the same and return formats are same.

	Response subsetting (sparse) support in queries
	QBD supports sparse data output, QBO does not support sparse data in queries
	Uniform way to support sparse output in v3 services

	SparseUpdate of entities
	Very little support for QBD, no support in QBO
	Any FMS sub-domain supports sparse update

	RequestId support
	Partial support of RequestId in QBO, QBD supports for all entities
	Full support for RequestId in FMS domain

	ChangeData support
	Different mechanism of supporting change data queries.
	Unified support for change data using query feature.

	Input and Output format support
	XML is the only input and output format supported
	XML, JSON as input & output formats, as well as domain specific output formats (e.g. PDF, JPG, etc.)

	Batch support
	QBD supports some batching, QBO does not support batching
	Unified FMS domain support for batching.

	Report Services
	QBD supports reports in one format; QBO supports reports in a generalized format.
	Unified support of reports, while specifying how the sub-totals and summaries are represented

	Customer, Vendor, Employee data model
	Derivative of Role-Based model proposed by legacy domain, didn’t fit well with QB model and PayCycle model
	Simplified and optimized to QB and PayCycle models.

	Job/SubCustomer
	Is sub-customer in QBO, Jobs in QBD. This caused a lot of confusion.
	Simplified and merged with Customer, there is no Job object in v3

	ID structure
	Complex structure that has an ID part and a "domain" attribute. Even though data can be addressed by only one domain, the domain info is repeated
	Simplified opaque string representation for IDs

	Reference structure
	Addressed by ID or Name in QBD, Addressed by ID only in QBO
	Addressed by only ID. Name is optional and is for output only.

	LineItem structure
	QBD supports line item in one way and QBO supports line item in slightly different way
	LineItem structure has been simplified & unified to ease developer adoption.

	Documentation
	Separate documentation for QBO and QBD
	Unified documentation for FMS domain, with specifications for QBO & QBD sub-domains listed

	Global Data Support in APIs
	Not supported.
	V3 services will be available with globalization enabled.

Intuit Confidential	Page 1

